(a)
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle
(a)
Answer to Problem 78P
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
Explanation of Solution
Draw the T-s diagram for the combined gas-steam power cycle.
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 9 is
Write the expression for the efficiency of compressor.
Refer to properties table of air, and interpret the value of
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 11 is
Write the expression for the efficiency of turbine.
Write the expression for the specific work input of pump I to the system/
Write the expression for the enthalpy of steam at state 2.
Write the expression for the specific work input of pump II to the system/
Write the expression for the enthalpy of steam at state 4.
Write the expression for the quality of steam at state 6s.
Here, specific entropy of wet steam at 0.6 MPa is
Write the expression for the specific enthalpy of steam at state 6s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the quality of steam at state 7s.
Here, specific entropy of wet steam at 20 kPa is
Write the expression for the specific enthalpy of steam at state 7s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the energy balance equation for the heat exchanger.
Rewrite Equation (1) and rearrange the terms with mass and enthalpy terms.
Here, mass flow rate of steam is
Conclusion:
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 1.386 kPa for
Refer Table A-17, “Ideal-gas properties of air”, interpret the value of the enthalpy
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 450.5 kPa for
Refer Table A-17 “Ideal-gas properties of air , interpret the value of
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “Superheated water”, select the enthalpy
Since, the entropy at state 5 is equal to state 6s, so the entropy value of
Interpret the value of
Substitute
Refer to steam tables, and interpret the value of
Substitute
Since, the entropy at state 5 is equal to the entropy at state 7, the entropy value of
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Substitute
Thus, the ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
(b)
The rate of heat input in the combustion chamber.
(b)
Answer to Problem 78P
The rate of heat input in the combustion chamber is
Explanation of Solution
Write the expression for the energy balance equation for the open feed water heater.
Rewrite Equation (3) and rearrange the terms with mass and enthalpy terms.
Here, fraction of steam extracted is y.
Write the expression for the specific power output of the turbine.
Write the expression for the specific net work output from the steam.
Write the expression for the specific net work output from the gas stream.
Write the expression for the net work output per unit mass of gas.
Write the expression for the mass flow rate of air.
Write the expression for the rate of heat input to the cycle.
Conclusion:
Substitute
Substitute 0.86 for
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the rate of heat input in the combustion chamber is
(c)
The thermal efficiency of the combined power cycle
(c)
Answer to Problem 78P
The thermal efficiency of the combined power cycle is
Explanation of Solution
Write the expression for the thermal efficiency of the combined power cycle.
Conclusion:
Substitute
Thus, the thermal efficiency of the combined power cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- A spring package with two springs and an external force, 200N. The short spring has a loin of 35 mm. Constantly looking for spring for short spring so that total compression is 35 mm (d). Known values: Long spring: Short spring:C=3.98 N/mm Lo=65mmLo=87.4mmF=c·fTotal compression is same for both spring. 200 = (3.98(c1) × 35) + (c₂ × 35) 200 = 139.3 + 35c₂ 200 - 139.3 = 35c₂ 60.7 = 35c₂ c₂ = 60.7/35 Short spring (c₂) = 1.73 N/mm According to my study book, the correct answer is 4.82N/mm What is wrong with the calculating?arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- 20. [Ans. 9; 71.8 mm] A semi-elliptical laminated spring is made of 50 mm wide and 3 mm thick plates. The length between the supports is 650 mm and the width of the band is 60 mm. The spring has two full length leaves and five graduated leaves. If the spring carries a central load of 1600 N, find: 1. Maximum stress in full length and graduated leaves for an initial condition of no stress in the leaves. 2. The maximum stress if the initial stress is provided to cause equal stress when loaded. [Ans. 590 MPa ; 390 MPa ; 450 MPa ; 54 mm] 3. The deflection in parts (1) and (2).arrow_forwardQ6/ A helical square section spring is set inside another, the outer spring having a free length of 35 mm greater than the inner spring. The dimensions of each spring are as follows: Mean diameter (mm) Side of square section (mm) Active turns Outer Inner Spring Spring 120 70 8 7 20 15 Determine the (1) Maximum deflection of the two springs and (2) Equivalent spring rate of the two springs after sufficient load has been applied to deflect the outer spring 60 mm. Use G = 83 GN/m².arrow_forwardQ2/ The bumper springs of a railway carriage are to be made of rectangular section wire. The ratio of the longer side of the wire to its shorter side is 1.5, and the ratio of mean diameter of spring to the longer side of wire is nearly equal to 6. Three such springs are required to bring to rest a carriage weighing 25 kN moving with a velocity of 75 m/min with a maximum deflection of 200 mm. Determine the sides of the rectangular section of the wire and the mean diameter of coils when the shorter side is parallel to the axis of the spring. The allowable shear stress is not to exceed 300 MPa and G = 84 kN/mm². Q6/ A belicalarrow_forward
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm]arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- S B Pin 6 mm Garrow_forwardMid-Term Exam 2024/2025 Post graduate/Applied Mechanics- Metallurgy Q1/ State the type of fault in the following case, and state the structure in which it will appear. АВСАВСВАСВАСАВСАВСarrow_forwardالثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY