
(a)
The mass flow rate of air in the gas-turbine cycle.
(a)

Answer to Problem 105RP
The mass flow rate of air in the gas-turbine cycle is
Explanation of Solution
Show the T-s diagram as in Figure (1).
Express Prandtl number at state 8s.
Here, pressure at state 8s is
Express enthalpy at state 8.
Here, enthalpy at state 7 is
Express Prandtl number at state 10s.
Here, pressure at state 10s is
Express enthalpy at state 10.
Here, enthalpy at state 9 is
Express enthalpy at state 1.
Here, enthalpy of saturation liquid at pressure of
Express specific volume at state 1.
Here, specific volume of saturation liquid at pressure of
Express initial work input.
Here, pressure at state 2 and 1 is
Express enthalpy at state 2.
Express quality at state 4s.
Here, entropy at state 4s is
Express enthalpy at state 4s.
Here, enthalpy at saturation liquid and evaporation at pressure of
Express enthalpy at state 4.
Here, enthalpy at state 3 is
Express quality at state 6s.
Here, entropy at state 6s is
Express enthalpy at state 6s.
Here, enthalpy at saturation liquid and evaporation at pressure of
Express enthalpy at state 6.
Here, enthalpy at state 5 is
Express the mass flow rate of air in the gas-turbine cycle from energy balance equation.
Here, enthalpy at state 10 is
Conclusion:
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 7 and Prandtl number at state 7 corresponding to temperature at state 7 of
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 8s corresponding to Prandtl number at state 8s of
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is Prandtl number at state8s and enthalpy at state 8s respectively.
Show the enthalpy at state 8s corresponding to Prandtl number as in Table (1).
Prandtl number at state 8s |
Enthalpy at state 8s |
9.684 | 523.63 |
9.849 | |
10.37 | 533.98 |
Substitute
Thus, enthalpy at state 8s corresponding to Prandtl number at state 8s of
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 9 and Prandtl number at state 9 corresponding to temperature at state 9 of
Here, enthalpy at state 9 is
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 10s corresponding to Prandtl number at state 10s of
Show the enthalpy at state 10s corresponding to Prandtl number as in Table (2).
Prandtl number at state 10s |
Enthalpy at state 10s |
52.59 | 843.98 |
56.3 | |
57.60 | 866.08 |
Use excels and substitutes the values from Table (II) in Equation (XVI) to get,
Here, enthalpy at state 10s is
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 11 corresponding to temperature at state 11 of
Here, enthalpy at state 11 is
Refer Table A-5, “saturated water-pressure table”, and write the properties at pressure of
Substitute
Substitute
Substitute
Substitute
Refer Table A-6, “superheated water”, and write the properties corresponding to pressure at state 3 of
Here, enthalpy and entropy at state 3 is
Due to throttling process, entropy at state 3 is equal to entropy at state 4s.
Refer Table A-5, “saturated water-pressure table”, and write the properties corresponding to pressure of
Substitute
Substitute
Substitute
Refer Table A-6, “superheated water”, and write the properties corresponding to pressure at state 5 of
Here, enthalpy and entropy at state 5 is
Due to throttling process, entropy at state 5 is equal to entropy at state 6s.
Refer Table A-5, “saturated water-pressure table”, and write the properties corresponding to pressure of
Substitute
Substitute
Substitute
Substitute
Hence, the mass flow rate of air in the gas-turbine cycle is
(b)
The rate of total heat input.
(b)

Answer to Problem 105RP
The rate of total heat input is
Explanation of Solution
Express the rate of total heat input.
Conclusion:
Substitute
Hence, the rate of total heat input is
(c)
The thermal efficiency of the combined cycle.
(c)

Answer to Problem 105RP
The thermal efficiency of the combined cycle is
Explanation of Solution
Express the rate of total heat output.
Express the thermal efficiency of the combined cycle.
Conclusion:
Substitute
Substitute
Hence, the thermal efficiency of the combined cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- 0,5 mm 450 mm 350 mm Bronze A = 1500 mm² E = 105 GPa प 21.6 × 10-PC Aluminum A = 1800 mm² £ = 73 GPa = a 23.2 × 10-PC PROBLEM 2.58 Knowing that a 0.5-mm gap exists when the temperature is 24°C, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to -75 MPa, (b) the corresponding exact length of the aluminum bar.arrow_forward0.5 mm 450 mm -350 mm Bronze Aluminum A 1500 mm² A 1800 mm² E 105 GPa E 73 GPa K = 21.6 X 10 G < = 23.2 × 10-G PROBLEM 2.59 Determine (a) the compressive force in the bars shown after a temperature rise of 82°C, (b) the corresponding change in length of the bronze bar.arrow_forwardThe truss shown below sits on a roller at A and a pin at E. Determine the magnitudes of the forces in truss members GH, GB, BC and GC. State whether they are in tension or compression or are zero force members.arrow_forward
- A weight (W) hangs from a pulley at B that is part of a support frame. Calculate the maximum possible mass of the weight if the maximum permissible moment reaction at the fixed support is 100 Nm. Note that a frictionless pin in a slot is located at C.arrow_forwardIt is the middle of a winter snowstorm. Sally and Jin take shelter under an overhang. The loading of the snow on top of the overhang is shown in the figure below. The overhang is attached to the wall at points A and B with pin supports. Another pin is at C. Determine the reactions of the pin supports at A and B. Express them in Cartesian vector form.arrow_forwardRecall that the CWH equation involves two important assumptions. Let us investigate how these assumptions affect the accuracy of state trajectories under the control inputs optimized in (a) and (b). (c.1): Discuss the assumptions about the chief and deputy orbits that are necessary for deriving CWH.arrow_forward
- PROBLEM 2.50 1.8 m The concrete post (E-25 GPa and a = 9.9 x 10°/°C) is reinforced with six steel bars, each of 22-mm diameter (E, = 200 GPa and a, = 11.7 x 10°/°C). Determine the normal stresses induced in the steel and in the concrete by a temperature rise of 35°C. 6c " 0.391 MPa 240 mm 240 mm 6₁ = -9.47 MPaarrow_forwardFor some viscoelastic polymers that are subjected to stress relaxation tests, the stress decays with time according to a(t) = a(0) exp(-4) (15.10) where σ(t) and o(0) represent the time-dependent and initial (i.e., time = 0) stresses, respectively, and t and T denote elapsed time and the relaxation time, respectively; T is a time-independent constant characteristic of the material. A specimen of a viscoelastic polymer whose stress relaxation obeys Equation 15.10 was suddenly pulled in tension to a measured strain of 0.5; the stress necessary to maintain this constant strain was measured as a function of time. Determine E (10) for this material if the initial stress level was 3.5 MPa (500 psi), which dropped to 0.5 MPa (70 psi) after 30 s.arrow_forwardFor the flows in Examples 11.1 and 11.2, calculate the magnitudes of the Δ V2 / 2 terms omitted in B.E., and compare these with the magnitude of the ℱ terms.arrow_forward
- Calculate ℛP.M. in Example 11.2.arrow_forwardQuestion 22: The superheated steam powers a steam turbine for the production of electrical power. The steam expands in the turbine and at an intermediate expansion pressure (0.1 MPa) a fraction is extracted for a regeneration process in a surface regenerator. The turbine has an efficiency of 90%. It is requested: Define the Power Plant Schematic Analyze the steam power system considering the steam generator system in the attached figure Determine the electrical power generated and the thermal efficiency of the plant Perform an analysis on the power generated and thermal efficiency considering a variation in the steam fractions removed for regeneration ##Data: The steam generator uses biomass from coconut shells to produce 4.5 tons/h of superheated steam; The feedwater returns to the condenser at a temperature of 45°C (point A); Monitoring of the operating conditions in the steam generator indicates that the products of combustion leave the system (point B) at a temperature of 500°C;…arrow_forwardThis is an old practice exam question.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





