Explanation of Solution
System security is to prevent information from unauthorized access. The goals of information systems are to prevent from information violations, identification of the attacks, and response for developing strategies.
Threat:
A threat is a thing that can cause damage to the organization, IT systems or other networks.
Vulnerability:
It is a path for threats to attack a system. It is a way to increase the availability of accessing individual or organizational assets.
Safeguard:
It is a measurement by an individual or organization to protect occurrence of threats. “Encryption” is a method which acts as a safeguard that encrypt the information of the company so that others can’t access the data.
Target:
Target is the output of threats which can be in the form of assets, bank accounts and statements.
Example:
If the user wants to transact amount through online, he/she must provide the bank details like account number and password over the web to access an account.
Threat in above example: The details of an account may be accessed by any intruder without user’s knowledge which leads to loss of information is one of the threats.
Vulnerability in above example: The same example that was mentioned on “threat”, the vulnerable point is the internet point used to access the user information.
Safeguard in above example: Safeguard is a protection shield that hides the user data from illegal access from threats.
Target in above example: The target of the above example is login the bank account by the intruder without user’s permission.
Types of threats:
There are three types of threats in system security. They are as follows:
- Human error
- Computer crime
- Natural disasters
Human error:
Human error is an error which is caused by a single person like employees or customers. For example, if an employee can accidentally removes or edits customer details.
Computer crime:
It is an illegal access by the hacker via internet or web. This crime can install viruses on computers to corrupt systems and hack information.
Natural disasters:
This threat caused due to natural disasters like accidents, floods or earthquakes. It may cause loss of capability and services.
Types of security losses:
There are five types of security losses in system security are as follows:
- Unauthorized data disclosure
- Incorrect data modification
- Faulty service
- Denial of service(DOS)
- Loss of infrastructure
Unauthorized data disclosure: The data disclosure is nothing but data was accessed by unauthorized people may result in loss of information. It might occur accidentally or intentionally.
Incorrect data modification: If the data has been modified incorrectly then the data loss occurred in any organization is termed as incorrect data modification...
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Using MIS (9th Edition)
- Whentheuserenters!!,themostrecentcommandinthehistoryisexecuted.In the example above, if the user entered the command: Osh> !! The ‘ls -l’ command should be executed and echoed on user’s screen. The command should also be placed in the history buffer as the next command. Whentheuserentersasingle!followedbyanintegerN,theNthcommandin the history is executed. In the example above, if the user entered the command: Osh> ! 3 The ‘ps’ command should be executed and echoed on the user’s screen. The command should also be placed in the history buffer as the next command. Error handling: The program should also manage basic error handling. For example, if there are no commands in the history, entering !! should result in a message “No commands in history.” Also, if there is no command corresponding to the number entered with the single !, the program should output "No such command in history."arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forward2. UNIX Shell and History Feature [20 points] This question consists of designing a C program to serve as a shell interface that accepts user commands and then executes each command in a separate process. A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user's next command: cat prog.c. The UNIX/Linux cat command displays the contents of the file prog.c on the terminal using the UNIX/Linux cat command and your program needs to do the same. osh> cat prog.c The above can be achieved by running your shell interface as a parent process. Every time a command is entered, you create a child process by using fork(), which then executes the user's command using one of the system calls in the exec() family (as described in Chapter 3). A C program that provides the general operations of a command-line shell can be seen below. #include #include #define MAX LINE 80 /* The maximum length command */ { int…arrow_forward
- Question#2: Design and implement a Java program using Abstract Factory and Singleton design patterns. The program displays date and time in one of the following two formats: Format 1: Date: MM/DD/YYYY Time: HH:MM:SS Format 2: Date: DD-MM-YYYY Time: SS,MM,HH The following is how the program works. In the beginning, the program asks the user what display format that she wants. Then the program continuously asks the user to give one of the following commands, and performs the corresponding task. Note that the program gets the current date and time from the system clock (use the appropriate Java date and time operations for this). 'd' display current date 't': display current time 'q': quit the program. • In the program, there should be 2 product hierarchies: "DateObject” and “TimeObject”. Each hierarchy should have format and format2 described above. • Implement the factories as singletons. • Run your code and attach screenshots of the results. • Draw a UML class diagram for the program.arrow_forward#include <linux/module.h> #include <linux/kernel.h> // part 2 #include <linux/sched.h> // part 2 extra #include <linux/hash.h> #include <linux/gcd.h> #include <asm/param.h> #include <linux/jiffies.h> void print_init_PCB(void) { printk(KERN_INFO "init_task pid:%d\n", init_task.pid); printk(KERN_INFO "init_task state:%lu\n", init_task.state); printk(KERN_INFO "init_task flags:%d\n", init_task.flags); printk(KERN_INFO "init_task runtime priority:%d\n", init_task.rt_priority); printk(KERN_INFO "init_task process policy:%d\n", init_task.policy); printk(KERN_INFO "init_task task group id:%d\n", init_task.tgid); } /* This function is called when the module is loaded. */ int simple_init(void) { printk(KERN_INFO "Loading Module\n"); print_init_PCB(); printk(KERN_INFO "Golden Ration Prime = %lu\n", GOLDEN_RATIO_PRIME); printk(KERN_INFO "HZ = %d\n", HZ); printk(KERN_INFO "enter jiffies = %lu\n", jiffies); return 0; } /* This function is called when the…arrow_forwardList at least five Operating Systems you know. What is the difference between the kernel mode and the user mode for the Linux? What is the system-call? Give an example of API in OS that use the system-call. What is cache? Why the CPU has cache? What is the difference between the Static Linking and Dynamic Linking when compiling the code.arrow_forward
- In the GoF book, List interface is defined as follows: interface List { int count(); //return the current number of elements in the list Object get(int index); //return the object at the index in the list Object first(); //return the first object in the list Object last(); //return the last object in the list boolean include(Object obj); //return true is the object in the list void append(Object obj); //append the object to the end of the list void prepend(Object obj); //insert the object to the front of the list void delete(Object obj); //remove the object from the list void deleteLast(); //remove the last element of the list void deleteFirst(); //remove the first element of the list void deleteAll(); //remove all elements of the list (a) Write a class adapter to adapt Java ArrayList to GoF List interface. (b) Write a main program to test your adapters through List interface. (c) Same requirement as (a) and (b), but write an object adapter to adapt Java ArrayList to GoF List…arrow_forwardIn modern packet-switched networks, including the Internet, the source host segments long, application-layer messages (for example, an image or a music file) into smaller packets and sends the packets into the network. The receiver then reassembles the packets back into the original message. We refer to this process as message segmentation. Figure 1.27 (attached) illustrates the end-to-end transport of a message with and without message segmentation. Consider a message that is 106 bits long that is to be sent from source to destination in Figure 1.27. Suppose each link in the figure is 5 Mbps. Ignore propagation, queuing, and processing delays. a. Consider sending the message from source to destination without message segmentation. How long does it take to move the message from the source host to the first packet switch? Keeping in mind that each switch uses store-and-forward packet switching, what is the total time to move the message from source host to destination host? b. Now…arrow_forwardConsider a packet of length L that begins at end system A and travels over three links to a destination end system. These three links are connected by two packet switches. Let di, si, and Ri denote the length, propagation speed, and the transmission rate of link i, for i = 1, 2, 3. The packet switch delays each packet by dproc. Assuming no queuing delays, in terms of di, si, Ri, (i = 1, 2, 3), and L, what is the total end-to-end delay for the packet? Suppose now the packet is 1,500 bytes, the propagation speed on all three links is 2.5 * 10^8 m/s, the transmission rates of all three links are 2.5 Mbps, the packet switch processing delay is 3 msec, the length of the first link is 5,000 km, the length of the second link is 4,000 km, and the length of the last link is 1,000 km. For these values, what is the end-to-end delay?arrow_forward
- how to know the weight to data and data to weight also weight by infomraion gain in rapid miner , between this flow diagram retrieve then selecte attrbuite then set role and split data and decision tree and apply model and peformance ,please show how the operators should be connected:arrow_forwardusing rapid miner how to creat decison trea for all attribute and another one with delete one or more of them also how i know the weight of each attribute and what that mean in impact the resultarrow_forwardQ.1. Architecture performance [10 marks] Answer A certain microprocessor requires either 2, 4, or 6 machine cycles to perform various operations. ⚫ (40+g+f)% require 2 machine cycles, ⚫ (30-g) % require 4 machine cycles, and ⚫ (30-f)% require 6 machine cycles. (a) What is the average number of machine cycles per instruction for this microprocessor? Answer (b) What is the clock rate (machine cycles per second) required for this microprocessor to be a "1000 MIPS" processor? Answer (c) Suppose that 35% of the instructions require retrieving an operand from memory which needs an extra 8 machine cycles. What is the average number of machine cycles per instruction, including the instructions that fetch operands from memory?arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education