![Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781111580704/9781111580704_largeCoverImage.gif)
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
1st Edition
ISBN: 9781111580704
Author: Kevin D. Dahm, Donald P. Visco
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.7, Problem 13P
For the n-pentane (1) + methanol (2) system at 422.6 K (Wilsak et al., 1987), answer the following questions based on Figure P10-13.
- A. List the boiling point for the pure components (n-pentane and methanol) at 422.6 K.
- B. Does this mixture show positive, negative, or no deviations from Raoult’s Law? Explain why, both graphically and from an interactions standpoint.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Question #6
a) Draw a simple block flow diagram of a petroleum refinery consisting of
following sections.
1. Atmospheric and vacuum distillation
2. Hydrotreating of diesel steam
3. Hydrocracking of LVGO
Show main product streams from each unit.
(8)
Phosphate often needs to be removed from wastewater because it will cause eutrophication of
receiving waters. At the Paso Robles Wastewater Treatment plant, they add MgCl2 to the pressate
(concentrated liquid pressed from sludge) to precipitate phosphate as the mineral struvite. Struvite is
formed by the reaction of phosphate with magnesium ions and ammonium, and the solubility product for
struvite is 5.5x10-14. The ammonium concentration is very high at 300 mg N-NH4/L because the sludge
is coming from an anaerobic digester. What minimum amount of MgCl2 (in mg/L) would be needed to
precipitate all but 1 mg/L phosphate? Struvite precipitates by the following reaction:
Mg++NH] +PO →MgNH PO
4
4
4
·
What is the pH of the following solutions?
a) 1.0 M HCI (strong acid)
b) 50 mg/L NaOH (strong base)
• c) 0.10 M acetic acid (Ka = 1.75x10-5)
Chapter 10 Solutions
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
Ch. 10.6 - A Pxy plot means that the pressure is constant....Ch. 10.6 - If you have a Txy plot at a given pressure and...Ch. 10.6 - What two pure component properties are you able to...Ch. 10.6 - On a Txy plot, where does the single vapor phase...Ch. 10.6 - For a mixture of n-butane (1) + n-pentane (2) at...Ch. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - For a mixture of methyl ethyl ketone (1) + water...Ch. 10.6 - For the methanol (1) + acetone (2) system at...Ch. 10.6 - Prob. 10E
Ch. 10.6 - There are four types of VLE calculations for...Ch. 10.7 - For the n-pentane (1) + methanol (2) system at...Ch. 10.7 - Consider the n-pentane (1) + methanol (2) system...Ch. 10.7 - Prob. 15PCh. 10.7 - Consider the 1-hexene (1) + n-hexane (2) system at...Ch. 10.7 - Consider the methanol (1) + ethanol (2) system at...Ch. 10.7 - Consider the n-hexane (1) + ethanol (2) system at...Ch. 10.7 - Consider the tetrahydrofuran (1) + n-hexane (2)...Ch. 10.7 - Consider the benzene (1) 1 m-xylene (2) system at...Ch. 10.7 - Prob. 21PCh. 10.7 - One hundred mol/min of an equimolar mixture of...Ch. 10.7 - One hundred mol/min of an equimolar mixture of...Ch. 10.7 - Twenty kmol/hr of an equimolar mixture of...Ch. 10.7 - A vapor mixture containing 5 moles of benzene and...Ch. 10.7 - A 50/50 (by mole) n-pentane/n-heptane liquid...Ch. 10.7 - A liquid mixture of diethyl ketone (1) and...Ch. 10.7 - A separation stream off the main reactor effluent...Ch. 10.7 - Prob. 29PCh. 10.7 - Prob. 30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A drinking water sample has 500 mg/L NaCl and 100 mg/L CaCO3. A. Calculate the ionic strength assuming no other ions present. B. What would be the activity coefficient for Pb2+ in this water? C. For a lead concentration of 15 ppb (SDWA standard), what would be the molarity and activity of the lead in this bottled water?arrow_forwardThe Debye-Hückel Theory and the Güntelberg and Davies Approximations are not accurate for very high ionic-strength solutions like seawater. Thus, more complicated methods must be used to calculate activity coefficients in seawater, or they can be determined experimentally. One study reported the following activity coefficients: Chemical Species Activity Coefficient (y) Ca2+ 0.28 CO32- 0.20 CaCO3 1.13* For a seawater sample with 140 µM Ca 2+ and 210 μM CO32-, let's determine if precipitation of CaCO3 is thermodynamically favorable: A) If you ignored the effect of the salinity on the activities of all the chemical species, what would be the value of Q? Based on this value of Q, would you expect CaCO3 to precipitate? B) Considering the activity coefficients given in the table above, what would be the value of Q (IAP)? Based on this value of Q (IAP), would you expect CaCO3 to precipitate?arrow_forwardA water sample contains 50 mg/L of Zn2+. How high must the pH be raised to precipitate all but 1 mg/L of the zinc? Assume that zinc primarily reacts with hydroxide ions in solution as part of its governing solubility equilibrium.arrow_forward
- Qu 4 Silver has FCC crystal structure at room temperature, and a lattice constant, a, of 0.407 nm. Draw a reduced sphere silver unit cell in the grids provided below, clearly label the lattice dimensions. Within the unit cell you drew, shade the (1 0 0) plane. Z → y How many atoms are contained within the (1 0 0) plane? Calculate the area of (1 0 0) plane in [nm?]. Express your answer in [nm?] to three significant figures. Calculate the planar density of the (1 0 0) plane in [atoms/nm?]. Express the answer in atoms/nm to three significant figures.i want to show all workarrow_forwardTask 1: Graphical Diagrams for Minimum Energy Consumption Table 1 provides a list of process streams that should be heat integrated. The utility system is represented by steam (ST) and cooling water (CW) that are available in sufficient amounts on the production site ("var" is short for variable, which means that the amounts of utilities required are unknown and should be determined). It is assumed that ATmin -10°C gives a reasonable economic trade-off between operating cost (energy) and investment cost (heat exchangers). Table 1: Data for Streams and Utilities Stream T₂(°C) T, (°C) mCp (kW/°C) HI 200 70 50 H2 300 60 10 C1 90 180 40 40 240 30 ST 250 250 (var) CW 10 20 (var) a) Sketch the overall heating and cooling curves (the Composite Curves) for this heat integration problem that consists of four process streams. Notice that for this sub- task (a) it is not required to satisfy ATmin -10°C. b) Try to shift in a parallel manner the overall heating curve until it lies completely…arrow_forwardFungal cells are cultured in a bioreactor using glucose (C6H12O6) as the carbon source andnitrate (NO3⁻) as the nitrogen source. The vessel is sparged with air. Biomass is the majorproduct formed; however, because the cells are subject to autolysis, significant levels of excretedby-products with the same molecular composition as the biomass are also produced.Elemental analysis of the fungal biomass gives a molecular formula of CH1.75O0.85N0.20, withnegligible ash. Yield measurements show that 0.28 g of intact fungal cells is produced per gramof glucose consumed, while 0.25 g of by-product is formed per gram of intact biomass.(a) If 8 kg of glucose is consumed per hour, at what rate must oxygen be provided to thereactor in units of mol min⁻¹?arrow_forward
- Ginseng roots can be used to produce valuable secondary metabolites, particularlyginsenosides, in vitro. A batch culture of Panax ginseng roots is established in an air-drivenbioreactor to enhance ginsenoside production. The culture is maintained at 25°C with acontrolled nutrient supply. A nutrient medium containing 5% glucose and 2% NH₃ is preparedfor the culture, with the remainder of the medium considered water. Air at 25°C and 1 atmpressure is sparged into the reactor at a rate of 400 cm³ min⁻¹. Over a 30-day culture period,30,000 g of nutrient medium and 1000 liters of O₂ are supplied, while 300 liters of CO₂ arecollected in the off-gas. At the end of 30 days, 20,000 g of liquid medium remains, containing0.085% residual glucose and 1.6% dissolved NH₃. The ratio of fresh root weight to dry weight is10:1.(a) What dry mass of ginseng roots is produced in 30 days?(b) Write the reaction equation for ginseng root growth, indicating the approximatechemical formula for the roots,…arrow_forwardA biologically active protein produced in Escherichia coli fermentations is purified byprecipitation. A 200 L solution containing 5.2 wt% protein is treated in a batch precipitationreactor. 1 kg of salt is added to induce protein precipitation. At the end of the process, theremaining solution contains 1.5 wt% protein, and the precipitate is wet with 5wt% of water.(a) What is the mass of the residual protein solution?(b) What mass of protein precipitate is produced?Assume the density of the solution remains approximately 1.00 g/mL throughout the process,and that the concentration of salt in the water captured in the precipitate is the same as theconcentration of salt in total.arrow_forwardرايدة حل هذا السؤال تكدر ترفعه الي محتاجه حله ضروريarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119285915/9781119285915_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285061238/9781285061238_smallCoverImage.gif)
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780072848236/9780072848236_smallCoverImage.gif)
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY