Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259731709
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.6, Problem 12E
Find a routs with the shortest response time between the pairs of computer centers in Exercise 11 using the reponse times given in Figure 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After the availability of covid 19 vaccinces in the Phiippines, the data below shows the number of senior citizens who received the vacines in City of Manila.
Week No.
1
5
9
Senior Citizens who are
Vaccinated
100
120
210
300
250
Based on the above data, determine the model of the vaccinated senior citizens.
Determine also the vaccinated senior citizens in the 15th week.
that the amounts of time (in minutes) required
for assembling the frames, installing the
wheels, and decorating for the Starstreak
and Superstreak models are as given in the
following table:
Frame Wheels Decoration
Starstreak
25
6.
16
Superstreak 14
9
12
Assume also that each day the company has
available 135 hours of labor for assembling
frames, 95 hours of labor for installing
wheels, and 110 hours of labor for
decoration. Assume also that the profit on
each Starstreak bike is $22.00 and the profit
on each Superstreak bike is $26.00. How
many bikes of each type should the company
make in order maximize its profit?
Students at certain university have to pass of one these three courses (MAT102, STA105, and PHY110). The pass rates for the courses MAT 102, STA105, and PHY110 are 0.54, 0.79, and 0.86, respectively.
Suppose that 30 candidates take the MAT102 course, 25 take the STA105 course and 20 take the PHY110 coruse. A student takes one of these courses and passes. What are the probabilities that she took
MAT102, STA105 or PHY110?
Hint: Denote by Q the event a student to pass their course. Now denote by R1, R2 and R3 the events to take courses MAT102, STA105, and PHY110. The pass reates then represent the conditional
probabilites: P(Q| R1), P(Q| R2) and P(Q| R3). The number of students taking the courses can be used to estimate the probabilities for R1, R2 and R3. For example, since there are total of 30 + 25 + 20 = 75
students that take the courses, for R1 we have:
P(R1) = 30/75 = 2/5
What you are asked is: given that a student passes (event Q) estimate the probabilities that she took MAT102…
Chapter 10 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 10.1 - Draw graph models, stating the type of graph...Ch. 10.1 - Prob. 2ECh. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For Exercises 3-5, determine whether the graph...Ch. 10.1 - For each undirected graph in Exercises 3-9 that is...
Ch. 10.1 - Let G be a simple graph. Show that the relation R...Ch. 10.1 - Let G be an undirected graph with a loop at every...Ch. 10.1 - The intersection graphof a collection of...Ch. 10.1 - Use the niche overlap graph inFigure 11to...Ch. 10.1 - Construct a niche overlap graph for six species of...Ch. 10.1 - Draw the acquaintanceship graph that represents...Ch. 10.1 - Prob. 17ECh. 10.1 - Who can influence Fred and whom can Fred influence...Ch. 10.1 - Construct an influence graph for the board members...Ch. 10.1 - The word apple can refer to a plant, a food, or a...Ch. 10.1 - Prob. 21ECh. 10.1 - Which other teams did Team 4 beat and which teams...Ch. 10.1 - In a round-robin tournament the Tigers beat the...Ch. 10.1 - Construct the call graph for a set of seven...Ch. 10.1 - Explain how the two telephone call graphs for...Ch. 10.1 - a) Explain how graphs can be used to model...Ch. 10.1 - How can a graph that models e-mail messages sent...Ch. 10.1 - How can a graph that models e-mail messages sent...Ch. 10.1 - Describe a graph model that represents whether...Ch. 10.1 - Describe a graph model that represents a subway...Ch. 10.1 - Prob. 31ECh. 10.1 - Describe a graph model that represents the...Ch. 10.1 - Describe a graph model that represents traditional...Ch. 10.1 - Prob. 34ECh. 10.1 - Construct a precedence graph for the following...Ch. 10.1 - Describe a discrete structure based on a graph...Ch. 10.1 - Describe a discrete structure based on a graph...Ch. 10.1 - Prob. 38ECh. 10.2 - In Exercises 1-3 find the number of vertices, the...Ch. 10.2 - In Exercises 1-3 find the number of vertices, the...Ch. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - Can a simple graph exist with 15 vertices each of...Ch. 10.2 - Show that the sum, over the set of people at a...Ch. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Prob. 9ECh. 10.2 - For each of the graphs in Exercises 7-9 determine...Ch. 10.2 - Construct the underlying undirected graph for the...Ch. 10.2 - What does the degree of a vertex represent in the...Ch. 10.2 - Prob. 13ECh. 10.2 - What does the degree of a vertex in the Hollywood...Ch. 10.2 - What do the in-degree and the out-degree of a...Ch. 10.2 - Prob. 16ECh. 10.2 - Prob. 17ECh. 10.2 - Show that in a simple graph with at least two...Ch. 10.2 - Use Exercise 18 to show that in a group of people,...Ch. 10.2 - Prob. 20ECh. 10.2 - In Exercises 21-25 determine whether the graph is...Ch. 10.2 - In Exercises 21-25 determine whether the graph is...Ch. 10.2 - Prob. 23ECh. 10.2 - Prob. 24ECh. 10.2 - In Exercises 21-25 determine whether the graph is...Ch. 10.2 - For which values ofnare these graphs bipartite?...Ch. 10.2 - Suppose that therearefour employees in the...Ch. 10.2 - Suppose that a new company has five employees:...Ch. 10.2 - Suppose that therearefive young women and five...Ch. 10.2 - Suppose that therearefive young women and six...Ch. 10.2 - Prob. 31ECh. 10.2 - Each of Exercises 31-33 can be solved using Hall's...Ch. 10.2 - Prob. 33ECh. 10.2 - Prob. 34ECh. 10.2 - Each of Exercises 31-33 can be solved using Hall's...Ch. 10.2 - Prob. 36ECh. 10.2 - How many vertices and how many edges do these...Ch. 10.2 - Prob. 38ECh. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Prob. 41ECh. 10.2 - How many edges does a graph have if its degree...Ch. 10.2 - Prob. 43ECh. 10.2 - Determine whether each of these sequences is...Ch. 10.2 - Prob. 45ECh. 10.2 - Prob. 46ECh. 10.2 - Prob. 47ECh. 10.2 - Prob. 48ECh. 10.2 - Prob. 49ECh. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Draw all sub graphs of this graph.Ch. 10.2 - Let G be a graph with vertices and e edges. Let M...Ch. 10.2 - For which values ofnare these graphs regular? a)...Ch. 10.2 - Prob. 56ECh. 10.2 - Prob. 57ECh. 10.2 - In Exercises 58-60 find the union of the given...Ch. 10.2 - Prob. 59ECh. 10.2 - In Exercises 58-60 find the union of the given...Ch. 10.2 - The complementarygraphGof a simple graph G has the...Ch. 10.2 - IfGis a simple graph with 15 edges andGhas 13...Ch. 10.2 - Prob. 63ECh. 10.2 - Prob. 64ECh. 10.2 - Prob. 65ECh. 10.2 - Prob. 66ECh. 10.2 - Prob. 67ECh. 10.2 - Describe an algorithm to decide whether a graph is...Ch. 10.2 - Theconverseof a directed graph G = (V, E), denoted...Ch. 10.2 - Theconverseof a directed graph G = (V, E), denoted...Ch. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - Theconverseof a directed graph G = (V, E), denoted...Ch. 10.2 - Prob. 74ECh. 10.2 - Theconverseof a directed graph G = (V, E), denoted...Ch. 10.3 - In Exercises 1-4 use an adjacency list to...Ch. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Represent the graph in Exercise 1 with an...Ch. 10.3 - Represent the graph in Exercise 2 with an...Ch. 10.3 - Represent the graph in Exercise 3 with an...Ch. 10.3 - Represent the graph in Exercise 4 with an...Ch. 10.3 - Represent each of these graphs with an adjacency...Ch. 10.3 - In Exercises 10-12 draw a graph with the given...Ch. 10.3 - In Exercises 10-12 draw a graph with the given...Ch. 10.3 - In Exercises 10-12 draw a graph with the given...Ch. 10.3 - In Exercises 13-15 represent the given graph using...Ch. 10.3 - In Exercises 13-15 represent the given graph using...Ch. 10.3 - In Exercises 13-15 represent the given graph using...Ch. 10.3 - In Exercises 16-18 draw an undirected graph...Ch. 10.3 - In Exercises 16-18 draw an undirected graph...Ch. 10.3 - In Exercises 16-18 draw an undirected graph...Ch. 10.3 - Prob. 19ECh. 10.3 - In Exercises 19-21 find the adjacency matrix of...Ch. 10.3 - In Exercises 19-21 find the adjacency matrix of...Ch. 10.3 - In Exercises 22-24 draw the graph represented by...Ch. 10.3 - In Exercises 22-24 draw the graph represented by...Ch. 10.3 - In Exercises22-24 draw the graph represented by...Ch. 10.3 - Find the density of the graph in a)Figure...Ch. 10.3 - Prob. 26ECh. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Is every zero-one square matrix that is symmetric...Ch. 10.3 - Prob. 30ECh. 10.3 - Prob. 31ECh. 10.3 - Prob. 32ECh. 10.3 - What is me sum of me entries in a column of me...Ch. 10.3 - What is the sum of the entries in a row of the...Ch. 10.3 - What is the sum of the entries in a column of the...Ch. 10.3 - Find an adjacency matrix for each of these graphs....Ch. 10.3 - Prob. 37ECh. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - In Exercises 38-48 determine whether the given...Ch. 10.3 - Show that isomorphism of simple graphs is an...Ch. 10.3 - Prob. 50ECh. 10.3 - Prob. 51ECh. 10.3 - Prob. 52ECh. 10.3 - Prob. 53ECh. 10.3 - Prob. 54ECh. 10.3 - Prob. 55ECh. 10.3 - Prob. 56ECh. 10.3 - Prob. 57ECh. 10.3 - How many non isomorphic simple graphs are there...Ch. 10.3 - How many nonisomorphic simple graphs are there...Ch. 10.3 - How many nonisomorphic simple graphs are there...Ch. 10.3 - Prob. 61ECh. 10.3 - Prob. 62ECh. 10.3 - Are the simple graphswiththe following adjacency...Ch. 10.3 - Determine whether the graphs without loops with...Ch. 10.3 - Prob. 65ECh. 10.3 - Prob. 66ECh. 10.3 - Prob. 67ECh. 10.3 - In Exercises 67-70 determine whether the given...Ch. 10.3 - Prob. 69ECh. 10.3 - In Exercises 67-70 determine whether the given...Ch. 10.3 - Show that ifGand H are isomorphic directed graphs,...Ch. 10.3 - Show that the property that a graph is bipartite...Ch. 10.3 - Prob. 73ECh. 10.3 - Prob. 74ECh. 10.3 - Prob. 75ECh. 10.3 - How much storage is needed to represent a simple...Ch. 10.3 - A devil's pairfor a purported isomorphism testis a...Ch. 10.3 - Prob. 78ECh. 10.4 - Does each of these lists of vertices form a path...Ch. 10.4 - Does each of these lists of vertices form a path...Ch. 10.4 - In Exercises 3-5 determine whether the given graph...Ch. 10.4 - In Exercises 3-5 determine whether the given graph...Ch. 10.4 - In Exercises 3-5 determine whether the given graph...Ch. 10.4 - How many connected components does each of the...Ch. 10.4 - What do the connected components of...Ch. 10.4 - Prob. 8ECh. 10.4 - Explain why in the collaboration graph of...Ch. 10.4 - In the Hollywood graph (see Example 3 inSection...Ch. 10.4 - Determine whether each of these graphs is strongly...Ch. 10.4 - Determine whether each of these graphs is strongly...Ch. 10.4 - What do the strongly connected components of a...Ch. 10.4 - Find the strongly connected components of each of...Ch. 10.4 - Find the strongly connected components of each of...Ch. 10.4 - Suppose that G=(V, E) is a directed graph. A...Ch. 10.4 - Prob. 17ECh. 10.4 - Prob. 18ECh. 10.4 - Find the number of paths of length n between two...Ch. 10.4 - Use paths either to show that these graphs are not...Ch. 10.4 - Prob. 21ECh. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Find the number of paths of length n between any...Ch. 10.4 - Find the number of paths of length n between any...Ch. 10.4 - Find the number of paths between c andd inthe...Ch. 10.4 - Prob. 27ECh. 10.4 - Prob. 28ECh. 10.4 - Prob. 29ECh. 10.4 - Show that in every simple graph there is a path...Ch. 10.4 - In Exercises 31-33 find all the cut vertices of...Ch. 10.4 - In Exercises 31-33 find all the cut vertices of...Ch. 10.4 - Prob. 33ECh. 10.4 - Find all the cut edges in the graph sin Exercises...Ch. 10.4 - Prob. 35ECh. 10.4 - Prob. 36ECh. 10.4 - Prob. 37ECh. 10.4 - Prob. 38ECh. 10.4 - Prob. 39ECh. 10.4 - A vertex basis in a directed graph G is aminimal...Ch. 10.4 - Prob. 41ECh. 10.4 - Prob. 42ECh. 10.4 - Prob. 43ECh. 10.4 - Use Exercise43 to show that a simple graph with n...Ch. 10.4 - Show that a simple graph G withnvertices is...Ch. 10.4 - Prob. 46ECh. 10.4 - How many nonisom orphic connected simple graphs...Ch. 10.4 - Show that each of the following graphs has no cut...Ch. 10.4 - Prob. 49ECh. 10.4 - For each of these graphs, find(G),(G),and...Ch. 10.4 - Show that if G is a connected graph, then it is...Ch. 10.4 - Show that if G is a connected graph withnvertices...Ch. 10.4 - Find(Km,n) and(Km,n), wherem andnare positive...Ch. 10.4 - Construct a graphG with(G) - 1,(G) -2, and...Ch. 10.4 - Show that if G is a graph, then(G) (G).Ch. 10.4 - ExplainhowTheorem 2canbe used to find the length...Ch. 10.4 - Prob. 57ECh. 10.4 - Prob. 58ECh. 10.4 - Prob. 59ECh. 10.4 - Show that the existence of a simple circuit of...Ch. 10.4 - Prob. 61ECh. 10.4 - Use Exercise 61 to show that the...Ch. 10.4 - Prob. 63ECh. 10.4 - In an old puzzle attributed to Alcuin of York...Ch. 10.4 - Use a graph model and a path in your graph, as in...Ch. 10.4 - Prob. 66ECh. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - Prob. 3ECh. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - In Exercises 1-8 determine whether the given graph...Ch. 10.5 - Suppose that in addition to the seven bridges of...Ch. 10.5 - Prob. 10ECh. 10.5 - When can the centerlines of the streets in a city...Ch. 10.5 - Devise a procedure, similar to Algorithm 1, for...Ch. 10.5 - In Exercises 13-15 determine whether the picture...Ch. 10.5 - In Exercises 13-15 determine whether the picture...Ch. 10.5 - In Exercises 13-15 determine whether the picture...Ch. 10.5 - Show that a directed multigraph having no isolated...Ch. 10.5 - Show that a directed multigraph having no isolated...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - In Exercises 18-23 determine whether the directed...Ch. 10.5 - Devise an algorithm for constructing Euler...Ch. 10.5 - Devise an algorithm for constructing Euler paths...Ch. 10.5 - For which values of n do thesegraphs have an...Ch. 10.5 - For whichvalues ofndo the graphs in Exercise 26...Ch. 10.5 - For which values ofmandn.does the complete...Ch. 10.5 - Find the least number of times it is necessary to...Ch. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - Prob. 35ECh. 10.5 - In Exercises 30-36 determine whether the given...Ch. 10.5 - Does the graph in Exercise 30 have a Hamilton...Ch. 10.5 - Does the graph in Exercise 31 have a Hamilton...Ch. 10.5 - Does the graph in Exercise 32 have a Hamilton...Ch. 10.5 - Does the graph in Exercise 33 have a Hamilton...Ch. 10.5 - Does the graph in Exercise 34 have a Hamilton...Ch. 10.5 - Does the graph in Exercise 35 have a Hamilton...Ch. 10.5 - Does the graph inExercise 36 have a Hamilton path?...Ch. 10.5 - For which values ofn.do the graphs in Exercise 26...Ch. 10.5 - For which values of m andndoes the complete...Ch. 10.5 - Show that thePetersen graph,shown here, does not...Ch. 10.5 - For each of these graphs, determine (i) whether...Ch. 10.5 - Can you find a simple graph with n vertices...Ch. 10.5 - Show that there is a Gray code of order whenever n...Ch. 10.5 - Fleury’s algorithm, published in 1883, constricts...Ch. 10.5 - Express Fleury's algorithm in pseudocode.Ch. 10.5 - Prob. 52ECh. 10.5 - Give a variant of Fleury's algorithm to produce...Ch. 10.5 - A diagnostic message can be sent out over a...Ch. 10.5 - Show that a bipartite graph with an odd number of...Ch. 10.5 - A knightis a chess piece that can move either two...Ch. 10.5 - A knightis a chess piece that can move either two...Ch. 10.5 - a) Show that finding a knights tour on...Ch. 10.5 - Show that there is a knight's tour on...Ch. 10.5 - Show that there is no knight's tour on...Ch. 10.5 - Show that there is no knight's tour on...Ch. 10.5 - Show that the graph representing the 1egal moves...Ch. 10.5 - Show that there is no reentrant knight's tour on...Ch. 10.5 - Show that there is a knight's tour on...Ch. 10.5 - The parts of this exercise outline a proof of...Ch. 10.5 - Show that if u and v are nondjacent vertices in a...Ch. 10.5 - Show that this graph doesnothave a Hamilton...Ch. 10.5 - Prob. 68ECh. 10.6 - For each of these problems about a subway system,...Ch. 10.6 - In Exercises 2-4 find the length of a shortest...Ch. 10.6 - In Exercises 2-4 find the length of a shortest...Ch. 10.6 - In Exercises 2-4 find the length of a shortest...Ch. 10.6 - Find a shortest path betweenaandzin each of the...Ch. 10.6 - Prob. 6ECh. 10.6 - Find shortest paths in the weighted graph in...Ch. 10.6 - Find a shortest path (in mileage) between each of...Ch. 10.6 - Find a combination of flights with the least total...Ch. 10.6 - Find a least expensive combination of flights...Ch. 10.6 - Find a shortest route (in distance) between...Ch. 10.6 - Find a routs with the shortest response time...Ch. 10.6 - Find a least expensive route, in monthly lease...Ch. 10.6 - Explain how to find a path mm the least number of...Ch. 10.6 - Exend Dijkstea's algorithm for finding the length...Ch. 10.6 - Extend Dijkstra's algorithm for finding the length...Ch. 10.6 - The weighted graphs in the figures here show some...Ch. 10.6 - Is a shortest path between two vertices in a...Ch. 10.6 - What are some applications where it is necessary...Ch. 10.6 - What is the length of a longest simple path in the...Ch. 10.6 - Floyd 's algorithm,displayed as Algorithm 2, can...Ch. 10.6 - Prove that Floyd's algorithm determines the...Ch. 10.6 - Give a big-0 estimate of the number of operations...Ch. 10.6 - Show that Dijkstra's algorithm may not work if...Ch. 10.6 - Solve the traveling salesperson problem for this...Ch. 10.6 - Solve the traveling salesperson problem far this...Ch. 10.6 - Find a route with the least total airfare that...Ch. 10.6 - Find a route with the least total airfare that...Ch. 10.6 - Construct a weighted undirected graph such that...Ch. 10.6 - Show that the problem of finding a circuit of...Ch. 10.6 - The longest path problemin a weighted directed...Ch. 10.7 - Can five houses be connected to two utilities...Ch. 10.7 - In Exercises 2-4 draw the given planar graph...Ch. 10.7 - In Exercises 2-4 draw the given planar graph...Ch. 10.7 - In Exercises 2-4 draw the given planar graph...Ch. 10.7 - In Exercises 5-9 determine whether the given graph...Ch. 10.7 - In Exercises 5-9 determine whether the given graph...Ch. 10.7 - In Exercises 5-9 determine whether the given graph...Ch. 10.7 - In Exercises 5-9 determine whether the given graph...Ch. 10.7 - In Exercises 5-9 determine whether the given graph...Ch. 10.7 - Complete the argument inExample 3.Ch. 10.7 - Show thatK5is nonplanar using an argument similar...Ch. 10.7 - Prob. 12ECh. 10.7 - Prob. 13ECh. 10.7 - Prob. 14ECh. 10.7 - ProveCorollary 3.Ch. 10.7 - Prob. 16ECh. 10.7 - Prob. 17ECh. 10.7 - Suppose that a planar graph haskconnected...Ch. 10.7 - Which of these nonplanar graphs have the property...Ch. 10.7 - Prob. 20ECh. 10.7 - In Exercises 20-22 determine whether the given...Ch. 10.7 - Prob. 22ECh. 10.7 - Prob. 23ECh. 10.7 - Prob. 24ECh. 10.7 - Prob. 25ECh. 10.7 - Prob. 26ECh. 10.7 - Prob. 27ECh. 10.7 - Prob. 28ECh. 10.7 - Prob. 29ECh. 10.7 - Show thatK3,3has 2 as its thickness.Ch. 10.7 - Find the thickness of the graphs in Exercise 27.Ch. 10.7 - Show that ifGis a connected simple graph...Ch. 10.7 - Prob. 33ECh. 10.7 - Prob. 34ECh. 10.7 - Prob. 35ECh. 10.7 - Prob. 36ECh. 10.7 - Draw K3,3on the surface of a torus so that no...Ch. 10.8 - Prob. 1ECh. 10.8 - Prob. 2ECh. 10.8 - Prob. 3ECh. 10.8 - Prob. 4ECh. 10.8 - Prob. 5ECh. 10.8 - Prob. 6ECh. 10.8 - Prob. 7ECh. 10.8 - Prob. 8ECh. 10.8 - Prob. 9ECh. 10.8 - Prob. 10ECh. 10.8 - Prob. 11ECh. 10.8 - Prob. 12ECh. 10.8 - Prob. 13ECh. 10.8 - What is the least number of colors needed to color...Ch. 10.8 - Prob. 15ECh. 10.8 - Show that a simple graph that has a circuit with...Ch. 10.8 - Schedule the final exams for Math 115, Math 116,...Ch. 10.8 - How many different channels are needed for six...Ch. 10.8 - The mathematics department has six committees,...Ch. 10.8 - Prob. 20ECh. 10.8 - Find the edge chromatic number of each of the...Ch. 10.8 - Prob. 22ECh. 10.8 - Find the edge chromatic numbers of a)Cn,wheren3....Ch. 10.8 - Prob. 24ECh. 10.8 - Show that ifGis a graph withnvertices, there no...Ch. 10.8 - Find the edge chromatic number ofKnwhen n is a...Ch. 10.8 - Prob. 27ECh. 10.8 - Prob. 28ECh. 10.8 - Construct a coloring of the graph shown using this...Ch. 10.8 - Use pseudocode to describe this coloring...Ch. 10.8 - Show that the coloring produced by this algorithm...Ch. 10.8 - Show thatCnis chromatically 3-critical whenevernis...Ch. 10.8 - Show thatWnis chromatically 4-critical whenever n...Ch. 10.8 - Prob. 34ECh. 10.8 - Prob. 35ECh. 10.8 - Find these values: a)X2(K3) b)X2(K4) c) X2(W4)...Ch. 10.8 - Prob. 37ECh. 10.8 - Prob. 38ECh. 10.8 - Frequencies for mobile radio (or cellular)...Ch. 10.8 - Show that every planar graph G can be colored...Ch. 10.8 - Prob. 41ECh. 10.8 - Show that g(3) = 1 and g(4) = 1 by showing that...Ch. 10.8 - Show that g(5) = 1. That is, show that all...Ch. 10.8 - Show that g(6) = 2by first using Exercises 42 and...Ch. 10.8 - Prob. 45ECh. 10.8 - Solve the art gallery problem by proving theart...Ch. 10 - a) Define a simple graph, a multigraph, a...Ch. 10 - Prob. 2RQCh. 10 - What is the relationship between the sum of the...Ch. 10 - Why must there be an even number of vertices of...Ch. 10 - Prob. 5RQCh. 10 - Describe the following families of graphs....Ch. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - a) Describe three different methods that can be...Ch. 10 - a) What does it mean for two simple graphs to be...Ch. 10 - a) What does it mean for a graph to be connected?...Ch. 10 - Prob. 12RQCh. 10 - a) Define an Euler circuit and an Euler path in an...Ch. 10 - Prob. 14RQCh. 10 - Give examples of at least two problems that can be...Ch. 10 - a) Describe Dijkstra's algorithm for finding the...Ch. 10 - a) What does it mean for a graph to be planar? b)...Ch. 10 - a) What is Eider's formula for connected planar...Ch. 10 - Prob. 19RQCh. 10 - a) Define the chromatic number of a graph. b) What...Ch. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Prob. 1SECh. 10 - How many nonisomorphic subgraphs doesK3have?Ch. 10 - Prob. 3SECh. 10 - Prob. 4SECh. 10 - Prob. 5SECh. 10 - Prob. 6SECh. 10 - Prob. 7SECh. 10 - Prob. 8SECh. 10 - LetG= (V, E)be an undirected graph and let...Ch. 10 - Prob. 10SECh. 10 - Prob. 11SECh. 10 - Prob. 12SECh. 10 - Prob. 13SECh. 10 - Prob. 14SECh. 10 - We say that three verticesu, v, andwof a simple...Ch. 10 - Find the clustering coefficient of each of the...Ch. 10 - Prob. 17SECh. 10 - For each of the graphs in Exercise 17, explain...Ch. 10 - Prob. 19SECh. 10 - A cliquein a simple undirected graph is a complete...Ch. 10 - Prob. 21SECh. 10 - Prob. 22SECh. 10 - Prob. 23SECh. 10 - Prob. 24SECh. 10 - Prob. 25SECh. 10 - Prob. 26SECh. 10 - A simple graph can be used to determine the...Ch. 10 - A simple graph can be used to determine the...Ch. 10 - A simple graph can be used to determine the...Ch. 10 - A simple graph can be used to determine the...Ch. 10 - Prob. 31SECh. 10 - A simple graph can be used to determine the...Ch. 10 - Prob. 33SECh. 10 - Prob. 34SECh. 10 - Prob. 35SECh. 10 - Prob. 36SECh. 10 - An orientationof an undirected simple graph is an...Ch. 10 - Prob. 38SECh. 10 - Prob. 39SECh. 10 - A tournament is a simple directed graph such that...Ch. 10 - Prob. 41SECh. 10 - A tournamentis a simple directed graph such that...Ch. 10 - Prob. 43SECh. 10 - Prob. 44SECh. 10 - Prob. 45SECh. 10 - Prob. 46SECh. 10 - A connected graphG = (V, E)withnvertices and m...Ch. 10 - A connected graphG = (V, E)withnvertices and m...Ch. 10 - Prob. 49SECh. 10 - Prob. 50SECh. 10 - Prob. 51SECh. 10 - Thedistancebetween two distinct verticesv1and v2of...Ch. 10 - a) Show that if the diameter of the simple graph G...Ch. 10 - Prob. 54SECh. 10 - Prob. 55SECh. 10 - Devise an algorithm for finding the second...Ch. 10 - Prob. 57SECh. 10 - Prob. 58SECh. 10 - Show that ifGis a simple graph with at least 11...Ch. 10 - Prob. 60SECh. 10 - Prob. 61SECh. 10 - Show that the chromatic number of a graph is less...Ch. 10 - Suppose that to generate a random simple graph...Ch. 10 - For each of these properties, determine whether it...Ch. 10 - Prob. 65SECh. 10 - Prob. 66SECh. 10 - Prob. 1CPCh. 10 - Prob. 2CPCh. 10 - Prob. 3CPCh. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - Prob. 8CPCh. 10 - Given, a positive integer n, generate a simple...Ch. 10 - Prob. 10CPCh. 10 - Prob. 11CPCh. 10 - Prob. 12CPCh. 10 - Given the vertex pairs associated to the edges of...Ch. 10 - Given the ordered pairs of vertices associated to...Ch. 10 - Given the list of edges of a simple graph, produce...Ch. 10 - Given the list of edges of a simple graph, produce...Ch. 10 - Given the list of edges and weights of these edges...Ch. 10 - Given the list of edges of an undirected graph,...Ch. 10 - Prob. 19CPCh. 10 - Given the distances between pairs of television...Ch. 10 - Prob. 1CAECh. 10 - Prob. 2CAECh. 10 - Prob. 3CAECh. 10 - Prob. 4CAECh. 10 - Prob. 5CAECh. 10 - Prob. 6CAECh. 10 - Prob. 7CAECh. 10 - Prob. 8CAECh. 10 - Generate at random simple graphs with 10 vertices....Ch. 10 - Generate at random simple graphs with 10 vertices....Ch. 10 - Find the chromatic number of each of the graphs...Ch. 10 - Find the shortest path a traveling salesperson can...Ch. 10 - Prob. 13CAECh. 10 - Prob. 14CAECh. 10 - Describe the origins and development of graph...Ch. 10 - Prob. 2WPCh. 10 - Discuss the applications of graph theory to...Ch. 10 - Prob. 4WPCh. 10 - Explain what community structure is in a graph...Ch. 10 - Describe some of the algorithms used to detect...Ch. 10 - Prob. 7WPCh. 10 - Explain how graph theory can help uncover networks...Ch. 10 - Prob. 9WPCh. 10 - Prob. 10WPCh. 10 - Prob. 11WPCh. 10 - Prob. 12WPCh. 10 - Describe how Euler paths can be used to help...Ch. 10 - Prob. 14WPCh. 10 - Describe theChinese postman problemand explain how...Ch. 10 - Describe some of the different conditions that...Ch. 10 - Prob. 17WPCh. 10 - Prob. 18WPCh. 10 - In modeling, very large scale integration (VLSI)...Ch. 10 - Prob. 20WPCh. 10 - Prob. 21WPCh. 10 - Describe and compare several different algorithms...Ch. 10 - Explain how graph multicolorings can be used in a...Ch. 10 - Prob. 24WPCh. 10 - Explain how the theory of random graphs can be...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- A textile company manufacture three types of fabric at three different factory. The weekly production time and the costs at each factory are shown in Table 2. Each week, 100 rolls of each type of fabric (cotton, jersey and denim) must be produced. Table 2 Cost Cotton Jersey Denim Time (RM) (RM) (RM) (hours) Factory 1 60 40 28 120 Factory 2 50 30 30 150 Factory 3 43 20 20 160 b) Use the minimum cost method to find a bfs for this problem.arrow_forwardA line of LRT with five (5) stations will be constructed in a city. A forecast passenger demand is given below: Depart Station Boarding Station 1 2 3 4 5 1 0 1600 10000 2000 250 2 230 0 11000 2071 230 3 60 1400 0 1500 170 4 250 1700 10400 0 250 5 300 1900 12000 2500 0 (a) Compute the number of passengers between each pair of the stations for both directions.(b) In this LRT project, headway must not be less than 120 seconds and must not be greater than 300 seconds. All stations are designed to cater a train of 6 couches. The capacity of each couch is 280 passengers. Based on the computed maximum passengers in (a), compute headway possibilities and corresponding number of couches per train. You may use rail utilisation factor of 0.75 and load factor of 0.9.arrow_forwardAssume that each full team consists of 1 doctor and 5 nurses, and that each half team consists of 1 doctor and 3 nurses. Assume also that there are 220 doctors and 920 nurses available to serve on teams. Assume also that the each full team can inoculate 240 people per hour and that each half team can inoculate 140 people per hour. How many full teams and half teams should be formed in order to maximize the number of inoculations per hour?arrow_forward
- 5arrow_forwardAn advantage of different emergence patterns for two species of a swarming insect is that they rarely emerge the same year to compete for food. Suppose that type A of the insect has a 5-year emergence cycle and type B of the insect has a 19-year cycle. If both species of the insect emerged during 2011 , when is the next year that both species will emerge during the same year?arrow_forwardThe value y (in 1982–1984 dollars) of each dollar paid by consumers in each of the years from 1994 through 2008 in a country is represented by the ordered pairs. (1994, 0.677) (1995, 0.655) (1996, 0.639) (1997, 0.618) (1998, 0.609) (1999, 0.605) (2000, 0.580) (2001, 0.565) (2002, 0.557) (2003, 0.542) (2004, 0.531) (2005, 0.516) (2006, 0.499) (2007, 0.478) (2008, 0.461) (a) Use a spreadsheet software program to generate a scatter plot of the data. Let t = 4 represent 1994. Do the data appear linear? Yes or No (b) Use the regression feature of the spreadsheet software program to find a linear model for the data. (Let t represent time. Round your numerical values to four decimal places.) y = (c) Use the model to predict the value (in 1982–1984 dollars) of 1 dollar paid by consumers in 2010 and in 2013. (Round your answers to two decimal places.) 2010 $ 2013 $ Discuss the…arrow_forward
- Q1. a) In the context of robot trajectories, state the difference between linear cartesian interpolation and joint interpolation. Give one example for each where one is more suitable than the other.arrow_forwardThe value y (in 1982–1984 dollars) of each dollar paid by consumers in each of the years from 1994 through 2008 in a country is represented by the ordered pairs. (1994, 0.675) (1995, 0.654) (1996, 0.643) (1997, 0.618) (1998, 0.611) (1999, 0.599) (2000, 0.585) (2001, 0.562) (2002, 0.559) (2003, 0.539) (2004, 0.529) (2005, 0.513) (2006, 0.493) (2007, 0.482) (2008, 0.462) (b) Use the regression feature of the spreadsheet software program to find a linear model for the data. (Let trepresent time. Round your numerical values to four decimal places.) y = (c) Use the model to predict the value (in 1982–1984 dollars) of 1 dollar paid by consumers in 2010 and in 2011. (Round your answers to two decimal places.)arrow_forwardErnesto is a web developer who is looking to determine which of two types of advertisements are the most cost effective. He suspects that advertisements with animations generate more clicks than advertisements without animations but wants to confirm his intuition before he starts recommending advertisements with animations to his clients. Ernesto creates advertisements with animations for 12 different products and then creates advertisements without animations for those same products. Then he measures the click-through rate for those advertisements. The data are provided below (given as percentages of total visitors to the site who clicked on the advertisement). Assume that the conditions required for this hypothesis test are satisfied. Use a calculator to test the paired data, where α=0.01. Compute the sample differences d using d=Without−With. Which of the following statements are accurate for this hypothesis test in order to evaluate the claim that the true mean difference between…arrow_forward
- What is the significance of R and R2 in gression model?arrow_forward4. Determine the equation of the least-squares approximating line that is the best fit for the data points (2, 6), (0, 2), and (1, 1).arrow_forward9. The following data represents the projected global defense spending (in trillion of dollars) from 2008 (t=0) through 2015(t=7): (0,60), (2,74), (4,90), (6,106), (8,118), (10,128), (12, 150). a) Find the equation of least square. b) what is the global spending of be defense be in 2018?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY