Comparison tests Use the Comparison Test or the Limit Comparison Test to determine whether the following series converge.
35.
Trending nowThis is a popular solution!
Chapter 10 Solutions
Calculus: Early Transcendentals (3rd Edition)
Additional Math Textbook Solutions
Precalculus Enhanced with Graphing Utilities (7th Edition)
Thomas' Calculus: Early Transcendentals (14th Edition)
University Calculus: Early Transcendentals (4th Edition)
Calculus and Its Applications (11th Edition)
Glencoe Math Accelerated, Student Edition
- Binomial seriesa. Find the first four nonzero terms of the binomial series centered at 0 for the given function.b. Use the first four terms of the series to approximate the given quantity.arrow_forward05* Let p, q> 0. Find the relation of p and q so that the following series is convergent. p>1 and p=1,q>1 p1 p1 and p=1, q<1 8 n=1 1 n²(Inn)arrow_forwardState whether it converges or diverges. Justify it using either a basic divergence, integral, basic comparison, limit comparison, alternating series, root or ratio testarrow_forward
- select the correct answer and explain step by steparrow_forwardWe want to use the Basic Comparison Test (sometimes called the Direct Comparison Test or just the Comparison Test) to determine if the series: k5 16 - converges or diverges by comparing it with: k We can conclude that: The first series diverges by comparison with the second series. The Basic Comparison Test is inconclusive in this situation. O The first series converges by comparison with the second series.arrow_forwardjse the Ratio Test to decide whether 3n is convergent or divergent. 100 the series 2* 'n=2 n2"arrow_forward
- choices: a. true b. false c. others (specify) 1. Stationary series are series with roughly horizontal with constant variance. 2.A non-stationary series the ACF drops to zero quickly. 3. The PACF of the stationary series is decaying exponentially,arrow_forwardMatch the series or sequence with the appropriate test or series to determine whether the series converges, i.e which test or series would you use to determine convergence?arrow_forwardUse any method to determine if the series converges or diverges. Give reasons for your answer. Σ (9e)="3 n=1 Select the correct choice below and fill in the answer box to complete your choice. (Type an exact answer.) OA. The series diverges because the limit used in the Ratio Test is B. The series diverges because the limit used in the nth-Term Test is C. The series converges because the limit used in the Ratio Test is OD. The series converges because the limit used in the nth-Term Test isarrow_forward
- 00 Does the seriesE(- 1n+12+n° n4 converge absolutely, converge conditionally, or diverge? n= 1 Choose the correct answer below and, if necessary, fill in the answer box to complete your choice. O A. The series converges absolutely per the Comparison Test with > 00 n4 n= 1 B. The series diverges because the limit used in the Ratio Test is not less than or equal to 1. OC. The series converges conditionally per the Alternating Series Test and the Comparison Test with n= 1 D. The series converges absolutely because the limit used in the nth-Term Test is E. The series diverges because the limit used in the nth-Term Test does not exist. O F. The series converges conditionally per the Alternating Series Test and because the limit used in the Ratio Test isarrow_forward↑ Use an appropriate test to determine whether the following series converges. IM8 Σ 1 k=2 (k-1)4 Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer.) 00 A. The series diverges by the Integral Test. The value of S 1 Oc. The series diverges. It is a p-series with p = D. The series converges. It is a p-series with p = 2 (x-1) OB. The series diverges by the Divergence Test. The value of lim 1 k→∞ (k-1) dx is OE. The series converges by the Divergence Test. The value of lim 4 1 k→∞ (k-1) is 4 is COD layer/player.aspx?cultureld=&theme=math&style=highered&disableStandbyIndicator=true&assignmentHandles Locale=true# This question: 1 pointearrow_forwardFind the interval I and radius of convergence R for the given power series. (Enter your answer for interval of convergence using interval notation.) || R = (-1)²(x - 4)k 12k k = 1 12 X Your answer cannot be understood or graded. More Informationarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning