Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
6th Edition
ISBN: 9781524908102
Author: SMITH KARL J, STRAUSS MONTY J, TODA MAGDALENA DANIELE
Publisher: Kendall Hunt Publishing
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.5, Problem 27PS
To determine
To find: the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ex.2. Show that the Serret-Frenet formulae can be written in the
form
= W x i dn
ds
dt
A db
= W X n,
ds
ds
q x M =
and determine the vector W.
12.2et L be the Line defined by the vector equation ū=
find the equation y=mc+b forL.
7.
Q4.
Chapter 10 Solutions
Calculus: Special Edition: Chapters 1-5 (w/ WebAssign)
Ch. 10.1 - Prob. 1PSCh. 10.1 - Prob. 2PSCh. 10.1 - Prob. 3PSCh. 10.1 - Prob. 4PSCh. 10.1 - Prob. 5PSCh. 10.1 - Prob. 6PSCh. 10.1 - Prob. 7PSCh. 10.1 - Prob. 8PSCh. 10.1 - Prob. 9PSCh. 10.1 - Prob. 10PS
Ch. 10.1 - Prob. 11PSCh. 10.1 - Prob. 12PSCh. 10.1 - Prob. 13PSCh. 10.1 - Prob. 14PSCh. 10.1 - Prob. 15PSCh. 10.1 - Prob. 16PSCh. 10.1 - Prob. 17PSCh. 10.1 - Prob. 18PSCh. 10.1 - Prob. 19PSCh. 10.1 - Prob. 20PSCh. 10.1 - Prob. 21PSCh. 10.1 - Prob. 22PSCh. 10.1 - Prob. 23PSCh. 10.1 - Prob. 24PSCh. 10.1 - Prob. 25PSCh. 10.1 - Prob. 26PSCh. 10.1 - Prob. 27PSCh. 10.1 - Prob. 28PSCh. 10.1 - Prob. 29PSCh. 10.1 - Prob. 30PSCh. 10.1 - Prob. 31PSCh. 10.1 - Prob. 32PSCh. 10.1 - Prob. 33PSCh. 10.1 - Prob. 34PSCh. 10.1 - Prob. 35PSCh. 10.1 - Prob. 36PSCh. 10.1 - Prob. 37PSCh. 10.1 - Prob. 38PSCh. 10.1 - Prob. 39PSCh. 10.1 - Prob. 40PSCh. 10.1 - Prob. 41PSCh. 10.1 - Prob. 42PSCh. 10.1 - Prob. 43PSCh. 10.1 - Prob. 44PSCh. 10.1 - Prob. 45PSCh. 10.1 - Prob. 46PSCh. 10.1 - Prob. 47PSCh. 10.1 - Prob. 48PSCh. 10.1 - Prob. 49PSCh. 10.1 - Prob. 50PSCh. 10.1 - Prob. 51PSCh. 10.1 - Prob. 52PSCh. 10.1 - Prob. 53PSCh. 10.1 - Prob. 54PSCh. 10.1 - Prob. 55PSCh. 10.1 - Prob. 56PSCh. 10.1 - Prob. 57PSCh. 10.1 - Prob. 58PSCh. 10.1 - Prob. 59PSCh. 10.1 - Prob. 60PSCh. 10.2 - Prob. 1PSCh. 10.2 - Prob. 2PSCh. 10.2 - Prob. 3PSCh. 10.2 - Prob. 4PSCh. 10.2 - Prob. 5PSCh. 10.2 - Prob. 6PSCh. 10.2 - Prob. 7PSCh. 10.2 - Prob. 8PSCh. 10.2 - Prob. 9PSCh. 10.2 - Prob. 10PSCh. 10.2 - Prob. 11PSCh. 10.2 - Prob. 12PSCh. 10.2 - Prob. 13PSCh. 10.2 - Prob. 14PSCh. 10.2 - Prob. 15PSCh. 10.2 - Prob. 16PSCh. 10.2 - Prob. 17PSCh. 10.2 - Prob. 18PSCh. 10.2 - Prob. 19PSCh. 10.2 - Prob. 20PSCh. 10.2 - Prob. 21PSCh. 10.2 - Prob. 22PSCh. 10.2 - Prob. 23PSCh. 10.2 - Prob. 24PSCh. 10.2 - Prob. 25PSCh. 10.2 - Prob. 26PSCh. 10.2 - Prob. 27PSCh. 10.2 - Prob. 28PSCh. 10.2 - Prob. 29PSCh. 10.2 - Prob. 30PSCh. 10.2 - Prob. 31PSCh. 10.2 - Prob. 32PSCh. 10.2 - Prob. 33PSCh. 10.2 - Prob. 34PSCh. 10.2 - Prob. 35PSCh. 10.2 - Prob. 36PSCh. 10.2 - Prob. 37PSCh. 10.2 - Prob. 38PSCh. 10.2 - Prob. 39PSCh. 10.2 - Prob. 40PSCh. 10.2 - Prob. 41PSCh. 10.2 - Prob. 42PSCh. 10.2 - Prob. 43PSCh. 10.2 - Prob. 44PSCh. 10.2 - Prob. 45PSCh. 10.2 - Prob. 46PSCh. 10.2 - Prob. 47PSCh. 10.2 - Prob. 48PSCh. 10.2 - Prob. 49PSCh. 10.2 - Prob. 50PSCh. 10.2 - Prob. 51PSCh. 10.2 - Prob. 52PSCh. 10.2 - Prob. 53PSCh. 10.2 - Prob. 54PSCh. 10.2 - Prob. 55PSCh. 10.2 - Prob. 56PSCh. 10.2 - Prob. 57PSCh. 10.2 - Prob. 58PSCh. 10.2 - Prob. 59PSCh. 10.2 - Prob. 60PSCh. 10.3 - Prob. 1PSCh. 10.3 - Prob. 2PSCh. 10.3 - Prob. 3PSCh. 10.3 - Prob. 4PSCh. 10.3 - Prob. 5PSCh. 10.3 - Prob. 6PSCh. 10.3 - Prob. 7PSCh. 10.3 - Prob. 8PSCh. 10.3 - Prob. 9PSCh. 10.3 - Prob. 10PSCh. 10.3 - Prob. 11PSCh. 10.3 - Prob. 12PSCh. 10.3 - Prob. 13PSCh. 10.3 - Prob. 14PSCh. 10.3 - Prob. 15PSCh. 10.3 - Prob. 16PSCh. 10.3 - Prob. 17PSCh. 10.3 - Prob. 18PSCh. 10.3 - Prob. 19PSCh. 10.3 - Prob. 20PSCh. 10.3 - Prob. 21PSCh. 10.3 - Prob. 22PSCh. 10.3 - Prob. 23PSCh. 10.3 - Prob. 24PSCh. 10.3 - Prob. 25PSCh. 10.3 - Prob. 26PSCh. 10.3 - Prob. 27PSCh. 10.3 - Prob. 28PSCh. 10.3 - Prob. 29PSCh. 10.3 - Prob. 30PSCh. 10.3 - Prob. 31PSCh. 10.3 - Prob. 32PSCh. 10.3 - Prob. 33PSCh. 10.3 - Prob. 34PSCh. 10.3 - Prob. 35PSCh. 10.3 - Prob. 36PSCh. 10.3 - Prob. 37PSCh. 10.3 - Prob. 38PSCh. 10.3 - Prob. 39PSCh. 10.3 - Prob. 40PSCh. 10.3 - Prob. 41PSCh. 10.3 - Prob. 42PSCh. 10.3 - Prob. 43PSCh. 10.3 - Prob. 44PSCh. 10.3 - Prob. 45PSCh. 10.3 - Prob. 46PSCh. 10.3 - Prob. 47PSCh. 10.3 - Prob. 48PSCh. 10.3 - Prob. 49PSCh. 10.3 - Prob. 50PSCh. 10.3 - Prob. 51PSCh. 10.3 - Prob. 52PSCh. 10.3 - Prob. 53PSCh. 10.3 - Prob. 54PSCh. 10.3 - Prob. 55PSCh. 10.3 - Prob. 56PSCh. 10.3 - Prob. 57PSCh. 10.3 - Prob. 58PSCh. 10.3 - Prob. 59PSCh. 10.3 - Prob. 60PSCh. 10.4 - Prob. 1PSCh. 10.4 - Prob. 2PSCh. 10.4 - Prob. 3PSCh. 10.4 - Prob. 4PSCh. 10.4 - Prob. 5PSCh. 10.4 - Prob. 6PSCh. 10.4 - Prob. 7PSCh. 10.4 - Prob. 8PSCh. 10.4 - Prob. 9PSCh. 10.4 - Prob. 10PSCh. 10.4 - Prob. 11PSCh. 10.4 - Prob. 12PSCh. 10.4 - Prob. 13PSCh. 10.4 - Prob. 14PSCh. 10.4 - Prob. 15PSCh. 10.4 - Prob. 16PSCh. 10.4 - Prob. 17PSCh. 10.4 - Prob. 18PSCh. 10.4 - Prob. 19PSCh. 10.4 - Prob. 20PSCh. 10.4 - Prob. 21PSCh. 10.4 - Prob. 22PSCh. 10.4 - Prob. 23PSCh. 10.4 - Prob. 24PSCh. 10.4 - Prob. 25PSCh. 10.4 - Prob. 26PSCh. 10.4 - Prob. 27PSCh. 10.4 - Prob. 28PSCh. 10.4 - Prob. 29PSCh. 10.4 - Prob. 30PSCh. 10.4 - Prob. 31PSCh. 10.4 - Prob. 32PSCh. 10.4 - Prob. 33PSCh. 10.4 - Prob. 34PSCh. 10.4 - Prob. 35PSCh. 10.4 - Prob. 36PSCh. 10.4 - Prob. 37PSCh. 10.4 - Prob. 38PSCh. 10.4 - Prob. 39PSCh. 10.4 - Prob. 40PSCh. 10.4 - Prob. 41PSCh. 10.4 - Prob. 42PSCh. 10.4 - Prob. 43PSCh. 10.4 - Prob. 44PSCh. 10.4 - Prob. 45PSCh. 10.4 - Prob. 46PSCh. 10.4 - Prob. 47PSCh. 10.4 - Prob. 48PSCh. 10.4 - Prob. 49PSCh. 10.4 - Prob. 50PSCh. 10.4 - Prob. 51PSCh. 10.4 - Prob. 52PSCh. 10.4 - Prob. 53PSCh. 10.4 - Prob. 54PSCh. 10.4 - Prob. 55PSCh. 10.4 - Prob. 56PSCh. 10.4 - Prob. 57PSCh. 10.4 - Prob. 58PSCh. 10.4 - Prob. 59PSCh. 10.4 - Prob. 60PSCh. 10.5 - Prob. 1PSCh. 10.5 - Prob. 2PSCh. 10.5 - Prob. 3PSCh. 10.5 - Prob. 4PSCh. 10.5 - Prob. 5PSCh. 10.5 - Prob. 6PSCh. 10.5 - Prob. 7PSCh. 10.5 - Prob. 8PSCh. 10.5 - Prob. 9PSCh. 10.5 - Prob. 10PSCh. 10.5 - Prob. 11PSCh. 10.5 - Prob. 12PSCh. 10.5 - Prob. 13PSCh. 10.5 - Prob. 14PSCh. 10.5 - Prob. 15PSCh. 10.5 - Prob. 16PSCh. 10.5 - Prob. 17PSCh. 10.5 - Prob. 18PSCh. 10.5 - Prob. 19PSCh. 10.5 - Prob. 20PSCh. 10.5 - Prob. 21PSCh. 10.5 - Prob. 22PSCh. 10.5 - Prob. 23PSCh. 10.5 - Prob. 24PSCh. 10.5 - Prob. 25PSCh. 10.5 - Prob. 26PSCh. 10.5 - Prob. 27PSCh. 10.5 - Prob. 28PSCh. 10.5 - Prob. 29PSCh. 10.5 - Prob. 30PSCh. 10.5 - Prob. 31PSCh. 10.5 - Prob. 32PSCh. 10.5 - Prob. 33PSCh. 10.5 - Prob. 34PSCh. 10.5 - Prob. 35PSCh. 10.5 - Prob. 36PSCh. 10.5 - Prob. 37PSCh. 10.5 - Prob. 38PSCh. 10.5 - Prob. 39PSCh. 10.5 - Prob. 40PSCh. 10.5 - Prob. 41PSCh. 10.5 - Prob. 42PSCh. 10.5 - Prob. 43PSCh. 10.5 - Prob. 44PSCh. 10.5 - Prob. 45PSCh. 10.5 - Prob. 46PSCh. 10.5 - Prob. 47PSCh. 10.5 - Prob. 48PSCh. 10.5 - Prob. 49PSCh. 10.5 - Prob. 50PSCh. 10.5 - Prob. 51PSCh. 10.5 - Prob. 52PSCh. 10.5 - Prob. 53PSCh. 10.5 - Prob. 54PSCh. 10.5 - Prob. 55PSCh. 10.5 - Prob. 56PSCh. 10.5 - Prob. 57PSCh. 10.5 - Prob. 58PSCh. 10.5 - Prob. 59PSCh. 10.5 - Prob. 60PSCh. 10 - Prob. 1PECh. 10 - Prob. 2PECh. 10 - Prob. 3PECh. 10 - Prob. 4PECh. 10 - Prob. 5PECh. 10 - Prob. 6PECh. 10 - Prob. 7PECh. 10 - Prob. 8PECh. 10 - Prob. 9PECh. 10 - Prob. 10PECh. 10 - Prob. 11PECh. 10 - Prob. 12PECh. 10 - Prob. 13PECh. 10 - Prob. 14PECh. 10 - Prob. 15PECh. 10 - Prob. 16PECh. 10 - Prob. 17PECh. 10 - Prob. 18PECh. 10 - Prob. 19PECh. 10 - Prob. 20PECh. 10 - Prob. 21PECh. 10 - Prob. 22PECh. 10 - Prob. 23PECh. 10 - Prob. 24PECh. 10 - Prob. 25PECh. 10 - Prob. 26PECh. 10 - Prob. 27PECh. 10 - Prob. 28PECh. 10 - Prob. 29PECh. 10 - Prob. 30PECh. 10 - Prob. 1SPCh. 10 - Prob. 2SPCh. 10 - Prob. 3SPCh. 10 - Prob. 4SPCh. 10 - Prob. 5SPCh. 10 - Prob. 6SPCh. 10 - Prob. 7SPCh. 10 - Prob. 8SPCh. 10 - Prob. 9SPCh. 10 - Prob. 10SPCh. 10 - Prob. 11SPCh. 10 - Prob. 12SPCh. 10 - Prob. 13SPCh. 10 - Prob. 14SPCh. 10 - Prob. 15SPCh. 10 - Prob. 16SPCh. 10 - Prob. 17SPCh. 10 - Prob. 18SPCh. 10 - Prob. 19SPCh. 10 - Prob. 20SPCh. 10 - Prob. 21SPCh. 10 - Prob. 22SPCh. 10 - Prob. 23SPCh. 10 - Prob. 24SPCh. 10 - Prob. 25SPCh. 10 - Prob. 26SPCh. 10 - Prob. 27SPCh. 10 - Prob. 28SPCh. 10 - Prob. 29SPCh. 10 - Prob. 30SPCh. 10 - Prob. 31SPCh. 10 - Prob. 32SPCh. 10 - Prob. 33SPCh. 10 - Prob. 34SPCh. 10 - Prob. 35SPCh. 10 - Prob. 36SPCh. 10 - Prob. 37SPCh. 10 - Prob. 38SPCh. 10 - Prob. 39SPCh. 10 - Prob. 40SPCh. 10 - Prob. 41SPCh. 10 - Prob. 42SPCh. 10 - Prob. 43SPCh. 10 - Prob. 44SPCh. 10 - Prob. 45SPCh. 10 - Prob. 46SPCh. 10 - Prob. 47SPCh. 10 - Prob. 48SPCh. 10 - Prob. 49SPCh. 10 - Prob. 50SPCh. 10 - Prob. 51SPCh. 10 - Prob. 52SPCh. 10 - Prob. 53SPCh. 10 - Prob. 54SPCh. 10 - Prob. 55SPCh. 10 - Prob. 56SPCh. 10 - Prob. 57SPCh. 10 - Prob. 58SPCh. 10 - Prob. 59SPCh. 10 - Prob. 60SPCh. 10 - Prob. 61SPCh. 10 - Prob. 62SPCh. 10 - Prob. 63SPCh. 10 - Prob. 64SPCh. 10 - Prob. 65SPCh. 10 - Prob. 66SPCh. 10 - Prob. 67SPCh. 10 - Prob. 68SPCh. 10 - Prob. 69SPCh. 10 - Prob. 70SPCh. 10 - Prob. 71SPCh. 10 - Prob. 72SPCh. 10 - Prob. 73SPCh. 10 - Prob. 74SPCh. 10 - Prob. 75SPCh. 10 - Prob. 76SPCh. 10 - Prob. 77SPCh. 10 - Prob. 78SPCh. 10 - Prob. 79SPCh. 10 - Prob. 80SPCh. 10 - Prob. 81SPCh. 10 - Prob. 82SPCh. 10 - Prob. 83SPCh. 10 - Prob. 84SPCh. 10 - Prob. 85SPCh. 10 - Prob. 86SPCh. 10 - Prob. 87SPCh. 10 - Prob. 88SPCh. 10 - Prob. 89SPCh. 10 - Prob. 92SPCh. 10 - Prob. 93SPCh. 10 - Prob. 94SPCh. 10 - Prob. 95SPCh. 10 - Prob. 96SPCh. 10 - Prob. 97SPCh. 10 - Prob. 98SPCh. 10 - Prob. 99SPCh. 10 - Prob. 1CRPCh. 10 - Prob. 2CRPCh. 10 - Prob. 3CRPCh. 10 - Prob. 4CRPCh. 10 - Prob. 5CRPCh. 10 - Prob. 6CRPCh. 10 - Prob. 7CRPCh. 10 - Prob. 8CRPCh. 10 - Prob. 9CRPCh. 10 - Prob. 10CRPCh. 10 - Prob. 11CRPCh. 10 - Prob. 12CRPCh. 10 - Prob. 13CRPCh. 10 - Prob. 14CRPCh. 10 - Prob. 15CRPCh. 10 - Prob. 16CRPCh. 10 - Prob. 17CRPCh. 10 - Prob. 18CRPCh. 10 - Prob. 19CRPCh. 10 - Prob. 20CRPCh. 10 - Prob. 21CRPCh. 10 - Prob. 22CRPCh. 10 - Prob. 23CRPCh. 10 - Prob. 24CRPCh. 10 - Prob. 25CRPCh. 10 - Prob. 26CRPCh. 10 - Prob. 27CRPCh. 10 - Prob. 28CRPCh. 10 - Prob. 29CRPCh. 10 - Prob. 30CRPCh. 10 - Prob. 31CRPCh. 10 - Prob. 32CRPCh. 10 - Prob. 33CRPCh. 10 - Prob. 34CRPCh. 10 - Prob. 35CRPCh. 10 - Prob. 36CRPCh. 10 - Prob. 37CRPCh. 10 - Prob. 38CRPCh. 10 - Prob. 39CRPCh. 10 - Prob. 40CRPCh. 10 - Prob. 41CRPCh. 10 - Prob. 42CRPCh. 10 - Prob. 43CRPCh. 10 - Prob. 44CRPCh. 10 - Prob. 45CRPCh. 10 - Prob. 46CRPCh. 10 - Prob. 47CRPCh. 10 - Prob. 48CRPCh. 10 - Prob. 49CRPCh. 10 - Prob. 50CRPCh. 10 - Prob. 51CRPCh. 10 - Prob. 52CRPCh. 10 - Prob. 53CRPCh. 10 - Prob. 54CRPCh. 10 - Prob. 55CRPCh. 10 - Prob. 56CRPCh. 10 - Prob. 57CRPCh. 10 - Prob. 58CRPCh. 10 - Prob. 59CRPCh. 10 - Prob. 60CRP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 2.30 Let r denote a position vector r = x = xiêį (r² = x₂x₁) and A be an arbitrary constant vector. Use index notation to show that: (a) (c) ² (r) = n(n+1) rn-2. V. (rx A) = 0. (b) (d) V(r. A) = A. ▼x (rx A) = -2A.arrow_forwardQ21.36 Determine all unit vectors that possess an angle of T/3 with the positive segment of the x-axis and π/4 with the positive segment of the y-axis.arrow_forwardPart 3&4 needed to be solved correctlyarrow_forward
- This is a practice problem from my Multivariable Calculus course: I was instructed to give my answer to two decimal places. Please show if you come up with the same values that are being marked incorrect here. Thank you.arrow_forwardSuppose z is given implicitly by the equation x3y-yz2+z/x=4 in a neighborhood of the point P (1, −2), in which z = −2. The value of the directional derivative of z at P in the direction of the vector w = (−3, −4), corresponds to:arrow_forwardConsider R = xi +yj+zk and r = a constant vector A = a1 +a2 í + az k: What is (A. V)R in terms of A? What is V?r-1. Note: You could directly write similar derivatives once you evaluate one of them.arrow_forward
- VC.10 Compute the divergence of each of the following vectors: F = (x, y, z) = A Tassuming " #0 and A = (A₂, Ay, A₂) is a constant vector. T Note: X Y 2 27372) (x² + y² + x²)³/²³ (x² + y² + x²)³/²¹ (x² + y² + :2)³/2 V • If the answer is a scalar, you can just type it in the box (using the Calcpad if you like, or using / for fractions, ^ for exponents, shift and for subscripts, etc.) For multiplication, you can either leave a space, or use *. So x*x=xx= x². Note that this is not the same as xx without a space; that will get read as an entirely different variable! • If you need to enter a vector, enter an ordered list of components, so for A you can enter either (Az, Ay, A₂) or {Az, Ay, A₂}. Ay₁ Az Vr 3 Note that the system isn't great with multiplying through by overall factors, so it's better not to write e.g. (2A, 2A, 2A₂). • In general, questions are not coded to accept vector input like & or A. So if you need to refer to, e.g., Ā, do so using its components! I will try to note…arrow_forward1. The vector X = k is a solution of x - (: -)x-G) 8, X' 2 for k = Enter only the value of k.arrow_forwardIff: R → R is the function that sends each point in R³ to the product of its coordinates, what is Dû f(5, 5, 0), where û is the unit vector that points in the direction (1,1,0)? (Note: You can crank this one out, or you can solve it by thinking geometrically, without doing any computations. Try doing it one way and then checking your work the other way.) O 0 1 3 5 10arrow_forward
- A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring feet. The ball is started in motion from the equilibrium position with a downward velocity of 3 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second). Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that the positive direction is down.) Take as the gravitational acceleration 32 feet per second per second. y = Hint: e^(-16t)(((1/(2sqrt(2))*e^(8sqrt(2)t)-(1/(2sqrt(2))*e^(-8sqrt(2)t))arrow_forward1. Determine the domain and range of the vector-valued function r(t) =(√t+3, In(2 – t), t²) -arrow_forwardSolution. Let T: R" → R™ be a linear transformation and let {V₁,..., vp} be a set of linearly independent vectors in R". Suppose that {T(v₁),...,T(v₂)} is inearly dependent. Then, there are real scalars c₁,..., Cp, not all zero, such that C₁T (V₁) + + cpT(vp) = 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Vector Components and Projections in 3-Dimensions; Author: turksvids;https://www.youtube.com/watch?v=DfIsa7ArxSo;License: Standard YouTube License, CC-BY
Linear Algebra 6.2.2 Orthogonal Projections; Author: Kimberly Brehm;https://www.youtube.com/watch?v=fqbwErsP8Xw;License: Standard YouTube License, CC-BY