![Organic Chemistry; Modified MasteringChemistry with Pearson eText -- ValuePack Access Card; Study Guide and Student Solutions Manual for Organic Chemistry, Books a la Carte Edition (7th Edition)](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780134240152/9780134240152_smallCoverImage.gif)
Concept explainers
(a)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of
alkyl halide in one step. In next step removal of base by proton takes place. - E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted
alkene . Thus E2 reaction is regioselective. If the leaving group is too weak then least substituted alkene is formed. - Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(b)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(c)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(d)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(e)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(f)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 10 Solutions
Organic Chemistry; Modified MasteringChemistry with Pearson eText -- ValuePack Access Card; Study Guide and Student Solutions Manual for Organic Chemistry, Books a la Carte Edition (7th Edition)
- The reaction: A + B ⇌ 2 C, can be represented by the equilibrium expression, KC =[C]2[A][B]=258 at 520K.When 1.00 M of C was allowed to reach equilibrium and 0.055 M of A was formed. If this reaction wasperformed at the same temperature using 0.500 M C, what would the equilibrium concentration of Abe?arrow_forward1. What is the functional group of an alcohol and a phenol? 2. Why are some alcohols soluble in water? 3. Classify each of the following alcohols as primary, secondary or tertiary. a. 3-pentanol b. 2-methyl-2-butanol c. 1-propanolarrow_forwardI need help with B2 using the information in B1. This is for my lab notebook, and I got confused on number 2. Please help.arrow_forward
- 4. Aluminum has a face-centered cubic structure. The unit cell length is 4.05Å. Calculate the radius of Al atom in the metal. (5 points).arrow_forwardHF and HNO2 are both considered weak acids. Given the following K values for their dissociationequations, which is the weaker of these two weak acids?HF (aq) ⇌ H+(aq) + F –(aq) K=6.6 x10-4 HNO2 (aq) ⇌ H+(aq) + NO2–(aq) K=7.2 X 10-4arrow_forwardThe equilibrium constant for this reaction is 5.88 x 104. If concentration of the lead ion is 5.24 M, whatis the concentration of the chloride ion?Pb2+(aq) + 2 Cl- (aq) ⇌ PbCl2(s)arrow_forward
- c. 1-propanoi 4. If you add chromate, an oxidizing agent, to each of the following, would a green Cr3+ solution be formed? a. 3-pentanol b. 2-methyl-2-butanol c. 1-propanol 5. If an alcohol solution has a pH of 5, would it be a primary alcohol, a secondary alcohol, a tertiary alcohol, or a phenol?arrow_forwardGiven the reaction: A(aq) + B(aq) ⇌ 2C(aq) + D(aq). 2.00 moles of each reactant were dissolved into 1.00 literof water. The reaction reached equilibrium, and at equilibrium the concentration of A was 1.60 M.A) Calculate the equilibrium concentrations for each substance. B) Write the equilibrium constant expression. C) Calculate the value for the equilibrium constant, Keq.arrow_forward1) Draw the structures of D-lysine and L-lysine and assign R/S configuration (showing your workings). 2) Draw the predominant ionisation forms of the free amino acid lysine, at pH 1.0, 8.0, and 11.0. pKa values: 2.2 (-COOH), 9.0 (α-NH3+), 10.5 (side-chain). 3) Calculate (showing your workings) the % of the different ionized species that are present in a 1.00 M solution of L-proline at pH = 10.0. pKa values: 1.95 (- COOH), 10.64 (α-NH3*). 4) a) Draw the tripeptide Tyr-Pro-Lys once with a trans peptide bond between Tyr and Pro and once with a cis peptide bond between Tyr and Pro. b) The electrospray ionization mass spectrum (ESI-MS) of the tripeptide you designed in part (a) shows peaks indicative of mono-protonation and di- protonation of the tripeptide. At what values of m/z would these peaks be expected (no fragmentation)? Briefly explain your answer (showing your workings). 5) How could the sequence of Ala-Met-Thr be distinguished from that of Thr-Ala- Met by tandem ESI-MS-MS?…arrow_forward
- LABORATORY REPORT FORM Part I. Determination of the Formula of a Known Hydrate 1. Mass of empty evaporating dish 3. Mass of hydrate Using subtraction or mass by difference, find the mass of the hydrate 76.96 -75.40 75.40g 76.968 1.568 01.56 76.90 g 2. Mass of evaporating dish + hydrate 4. Mass of evaporating dish + hydrate (after heating) First 76.98 g Third 76.66g Second Fourth (if necessary) 76.60g 5. Mass of anhydrate 6. Mass of water lost by the hydrate 7. Percent of water of hydration (Show Calculations) 8. Moles of water (Show Calculations) mol mass of water = MM of water (g/m) 9. Moles of anhydrate (Show Calculations) 10. Ratio of moles of water to moles of anhydrate 11 F(Show Calculations) 11. Formula of hydrate - Mass of water (g) x 100 % water hydration g g % Mass of hydrate (9) x IC % = (Mass of hydrate- mass of an) mass of hydrate (g) % = (1.569- × 100= mol 1.569 mol Mol Mass of anhydrate/MM of anhydrate 12. What was the color of the hydrate? blue What was the color of the…arrow_forwardcompared t-critical with t-calculated and 95% confidence interval to answer this questionarrow_forwardComparing two means. Horvat and co-workers used atomic absorption spectroscopy to determine the concentration of Hg in coal fly ash. Of particular interest to the authors was developing an appropriate procedure for digesting samples and releasing the Hg for analysis. As part of their study they tested several reagents for digesting samples. Their results using HNO3 and using a 1+3 mixture of HNO3 and HCl are shown here. All concentrations are given as ppb Hg sample. HNO3: 161, 165, 160, 167, 166 1+3 HNO3–HCl: 159, 145, 140, 147, 143, 156 Determine whether there is a significant difference between these methods at the 95% confidence interval.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)