
Concept explainers
(a)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of
alkyl halide in one step. In next step removal of base by proton takes place. - E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted
alkene . Thus E2 reaction is regioselective. If the leaving group is too weak then least substituted alkene is formed. - Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(b)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(c)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(d)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(e)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.
(f)
Interpretation:
The given reaction whether undergoes E1 or E2 elimination has to be predicted. Major product of the reaction has to be drawn.
Concept Introduction:
- Elimination reaction is a reaction in which an atom or group of a molecule is eliminated and a double bond is formed.
- This type of reaction primarily occur in alkyl/aryl halides.
- Elimination reactions are of two types – E1 elimination and E2 elimination.
- E1 elimination involves formation of carbocation by dissociation of alkyl halide in one step. In next step removal of base by proton takes place.
- E2 elimination is a concerted reaction and involves formation of transition state in which both proton and halide are removed in one single step.
- E2 elimination follows Zaistev’s rule that the major product is usually the most substituted alkene.
- Primary and secondary halides undergo E2 elimination whereas tertiary halides undergo E1 elimination as tertiary carbocation formed is more stable.
- Allylic and benzylic halides undergo both E1 and E2 reactions.
- Presence of high concentration of strong base favours E2 reaction.
- Presence of weak base favours E1 reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
Organic Chemistry; Modified MasteringChemistry with Pearson eText -- ValuePack Access Card; Study Guide and Student Solutions Manual for Organic Chemistry, Books a la Carte Edition (7th Edition)
- Draw the major product formed via an E1 pathway.arrow_forwardPart 9 of 9 Consider the products for the reaction. Identify the major and minor products. HO Cl The E stereoisomer is the major product and the Z stereoisomer is the minor product ▼ S major product minor productarrow_forwardConsider the reactants below. Answer the following questions about the reaction mechanism and products. HO Clarrow_forward
- julietteyep@gmail.com X YSCU Grades for Juliette L Turner: Orc X 199 A ALEKS - Juliette Turner - Modul X A ALEKS - Juliette Turner - Modul x G butane newman projection - Gox + www-awa.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IBxzaplnN4HsoQggFsejpgqKoyrQrB2dKVAN-BcZvcye0LYa6eXZ8d4vVr8Nc1GZqko5mtw-d1MkNcNzzwZsLf2Tu9_V817y?10Bw7QYjlb il Scribbr citation APA SCU email Student Portal | Main Ryker-Learning WCU-PHARM D MySCU YSCU Canvas- SCU Module 4: Homework (Ch 9-10) Question 28 of 30 (1 point) | Question Attempt: 1 of Unlimited H₂SO heat OH The mechanism of this reaction involves two carbocation intermediates, A and B. Part 1 of 2 KHSO 4 rearrangement A heat B H₂O 2 OH Draw the structure of A. Check Search #t m Save For Later Juliet Submit Assignm 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardThe electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forward
- What is the product of the reaction? F3C. CF3 OMe NaOH / H₂Oarrow_forwardWhat would you expect to be the major product obtained from the following reaction? Please explain what is happening here. Provide a detailed explanation and a drawing showing how the reaction occurs. The correct answer to this question is V.arrow_forwardPlease answer the question for the reactions, thank youarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





