Rutherford’s Experiment In May 1911, Ernest Rutherford published a paper in Philosophical Magazine. In this article, he described the motion of alpha particles as they are shot at a piece of gold foil 0.00004 cm thick. Before conducting this experiment, Rutherford expected that the alpha particles would shoot through the foil just as a bullet would shoot through snow. Instead, a small fraction of the alpha particles bounced off the foil. This led to the conclusion that the nucleus of an atom is dense, while the remainder of the atom is sparse. Only the density of the nucleus could cause the alpha particles to deviate from their path. The figure shows a diagram from Rutherford’s paper that indicates that the deflected alpha particles follow the path of one branch of a hyperbola. (a) Find an equation of the asymptotes under this scenario. (b) If the vertex of the path of the alpha particles is 10 cm from the center of the hyperbola, find a model that describes the path of the particle.
Rutherford’s Experiment In May 1911, Ernest Rutherford published a paper in Philosophical Magazine. In this article, he described the motion of alpha particles as they are shot at a piece of gold foil 0.00004 cm thick. Before conducting this experiment, Rutherford expected that the alpha particles would shoot through the foil just as a bullet would shoot through snow. Instead, a small fraction of the alpha particles bounced off the foil. This led to the conclusion that the nucleus of an atom is dense, while the remainder of the atom is sparse. Only the density of the nucleus could cause the alpha particles to deviate from their path. The figure shows a diagram from Rutherford’s paper that indicates that the deflected alpha particles follow the path of one branch of a hyperbola. (a) Find an equation of the asymptotes under this scenario. (b) If the vertex of the path of the alpha particles is 10 cm from the center of the hyperbola, find a model that describes the path of the particle.
Solution Summary: The author explains how Rutherford described the motion of alpha particles as they were shot at a piece of gold foil 0.00004 cm thick.
Rutherford’s Experiment In May 1911, Ernest Rutherford published a paper in Philosophical Magazine. In this article, he described the motion of alpha particles as they are shot at a piece of gold foil 0.00004 cm thick. Before conducting this experiment, Rutherford expected that the alpha particles would shoot through the foil just as a bullet would shoot through snow. Instead, a small fraction of the alpha particles bounced off the foil. This led to the conclusion that the nucleus of an atom is dense, while the remainder of the atom is sparse. Only the density of the nucleus could cause the alpha particles to deviate from their path. The figure shows a diagram from Rutherford’s paper that indicates that the deflected alpha particles follow the path of one branch of a hyperbola.
(a) Find an equation of the asymptotes under this scenario.
(b) If the vertex of the path of the alpha particles is 10 cm from the center of the hyperbola, find a model that describes the path of the particle.
LESSON
MATHEMATICS ACTIVITIES
1.3 DECIMALS
1. Josh used itres of ster during
an Integrahed
Express the ami
remained
DATE
b) 14.07
2. Express 0.5 as a fraction in its
simplest form or
e) 327.034
7. Write the number
form is
e) 5.11x 10
ese standard
3. Express 0.145 os
simplest form
fraction in its
b) 2.03x102
4. In August 2022, the cost of a litre of
petrol was Sh 159.25. How much did
kipchoge pay for two litres?
c) 6.3x103
5. A doctor prescribed 12.5 ml of a dr
to a patient. Express the drug
prescribed in litres to two significant
figures
8. Work out:
a) 2.05 5.2-1.8
rite each of the following in stand-
ds form
0039
b)3.6 2.8 (2.8+0
RK
119
43
Previous Problem
University
at Buffalo
Problem List
Next Problem
Match the surfaces (a) - (f) below with the contour diagrams (1) - (6) below those.
(a) Surface (a) matches contour 5 V
V
(b) Surface (b) matches contour 2 V
(c) Surface (c) matches contour 1
(d) Surface (d) matches contour 6 V
(e) Surface (e) matches contour 4 V
(f) Surface (f) matches contour 3 V
(4)
(1)
-0.25
(a)
(b)
(c)
(d)
(e)
y
y
2.5
0.5
1.5
1.5
1.5
y
.3
0.25
OC
0.25
-0.25
(2)
X
1.5
ZI
(f)
y
0.01
0.01
(3)
☑
X
0.01
0.01
0.2
0.2
(5)
0 x
0.5
(6)
0.25
X
X
0.25
0.5
43
University
at Buffalo
Previous Problem
Problem List
Next Problem
At least one of the answers above is NOT correct.
The figure shows a hill with two paths, A and B.
(a) What is the elevation change along each path? 400
9400
✓ feet
(b) Which path ascends more rapidly? A v
(c) On which path will you probably have a better view of the surrounding
countryside (assuming that trees do not block your view)? A V
(d) Along which path is there more likely to be a stream?
A V
Note: You can earn 50% partial credit for 2-3 correct answers.
Preview My Answers
Submit Answers
Q
hulu
))))
9800'
A
10000
(Click on graph to enlarge)
L
^
B
0
Logged in as Luella Ya
4)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.