
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.4, Problem 44E
When recording live performances, sound engineers often use a microphone with a cardioid pickup pattern because it suppresses noise from the audience. Suppose the microphone is placed 4 m from the front of the stage (as in the figure) and the boundary of the optimal pickup region is given by the cardioid r = 8 + 8 sin θ, where r is measured in meters and the microphone is at the pole. The musicians want to know the area they will have on stage within the optimal pickup range of the microphone. Answer their question.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 10 Solutions
Calculus: Early Transcendentals
Ch. 10.1 - Sketch the curve by using the parametric equations...Ch. 10.1 - Sketch the curve by using the parametric equations...Ch. 10.1 - Prob. 3ECh. 10.1 - Prob. 4ECh. 10.1 - Prob. 5ECh. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Prob. 10E
Ch. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - Prob. 14ECh. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - (a) Eliminate the parameter to find a Cartesian...Ch. 10.1 - Describe the motion of a particle with position...Ch. 10.1 - Describe the motion of a particle with position...Ch. 10.1 - Describe the motion of a particle with position...Ch. 10.1 - Describe the motion of a particle with position...Ch. 10.1 - Suppose a curve is given by the parametric...Ch. 10.1 - Match the graphs of the parametric equations x =...Ch. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.1 - Match the parametric equations with the graphs...Ch. 10.1 - Graph the curve x = y 2 sin y.Ch. 10.1 - Graph the curves y = x3 4x and x = y3 4y and...Ch. 10.1 - (a) Show that the parametric equations x = x1 +...Ch. 10.1 - Use a graphing device and the result of Exercise...Ch. 10.1 - Find parametric equations for the path of a...Ch. 10.1 - (a) Find parametric equations for the ellipse...Ch. 10.1 - Use a graphing calculator or computer to reproduce...Ch. 10.1 - Use a graphing calculator or computer to reproduce...Ch. 10.1 - Compare the curves represented by the parametric...Ch. 10.1 - Prob. 38ECh. 10.1 - Derive Equations 1 for the case /2Ch. 10.1 - Let P be a point at a distance d from the center...Ch. 10.1 - If a and b are fixed numbers, find parametric...Ch. 10.1 - If a and b are fixed numbers, find parametric...Ch. 10.1 - A curve, called a witch of Maria Agnesi, consists...Ch. 10.1 - (a) Find parametric equations for the set of all...Ch. 10.1 - Suppose that the position of one particle at time...Ch. 10.1 - If a projectile is fired with an initial velocity...Ch. 10.1 - Investigate the family of curves defined by the...Ch. 10.1 - The swallowtail catastrophe curves are defined by...Ch. 10.1 - Graph several members of the family of curves with...Ch. 10.1 - Graph several members of the family of curves x =...Ch. 10.1 - Prob. 51ECh. 10.1 - Prob. 52ECh. 10.2 - Find dy/dx. 1. x=t1+t,y=1+tCh. 10.2 - Find dy/dx. 2. x = tet, y = t + sin tCh. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find an equation of the tangent to the curve at...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find dy/dx and d2y/dx2. For which values of t is...Ch. 10.2 - Find the points on the curve where the tangent is...Ch. 10.2 - Find the points on the curve where the tangent is...Ch. 10.2 - Find the points on the curve where the tangent is...Ch. 10.2 - Find the points on the curve where the tangent is...Ch. 10.2 - Use a graph to estimate the coordinates of the...Ch. 10.2 - Prob. 22ECh. 10.2 - Graph the curve in a viewing rectangle that...Ch. 10.2 - Graph the curve in a viewing rectangle that...Ch. 10.2 - Show that the curve x = cos t, y = sin t cos t has...Ch. 10.2 - Prob. 26ECh. 10.2 - (a) Find the slope of the tangent line to the...Ch. 10.2 - (a) Find the slope of the tangent to the astroid x...Ch. 10.2 - At what point(s) on the curve x = 3t2 + 1, y = t3 ...Ch. 10.2 - Find equations of the tangents to the curve x =...Ch. 10.2 - Use the parametric equations of an ellipse, x = a...Ch. 10.2 - Find the area enclosed by the curve x = t2 2t,...Ch. 10.2 - Find the area enclosed by the x-axis and the curve...Ch. 10.2 - Find the area of the region enclosed by the...Ch. 10.2 - Find the area under one arch of the trochoid of...Ch. 10.2 - Let be the region enclosed by the loop of the...Ch. 10.2 - Set up an integral that represents the length of...Ch. 10.2 - Set up an integral that represents the length of...Ch. 10.2 - Set up an integral that represents the length of...Ch. 10.2 - Prob. 40ECh. 10.2 - Find the exact length of the curve. 41. x = 1 +...Ch. 10.2 - Find the exact length of the curve. 42. x = et t,...Ch. 10.2 - Find the exact length of the curve. 43. x = t sin...Ch. 10.2 - Find the exact length of the curve. 44. x = 3 cos...Ch. 10.2 - Graph the curve and find its exact length. 45. x =...Ch. 10.2 - Graph the curve and find its exact length. 46....Ch. 10.2 - Graph the curve x = sin t + sin 1.5t, y = cos t...Ch. 10.2 - Find the length of the loop of the curve x = 3t ...Ch. 10.2 - Prob. 49ECh. 10.2 - In Exercise 10.1.43 you were asked to derive the...Ch. 10.2 - Find the distance traveled by a particle with...Ch. 10.2 - Find the distance traveled by a particle with...Ch. 10.2 - Show that the total length of the ellipse x = a...Ch. 10.2 - Prob. 54ECh. 10.2 - (a) Graph the epitrochoid with equations x = 11...Ch. 10.2 - Set up an integral that represents the area of the...Ch. 10.2 - Prob. 58ECh. 10.2 - Prob. 59ECh. 10.2 - Prob. 60ECh. 10.2 - Find the exact area of the surface obtained by...Ch. 10.2 - Find the exact area of the surface obtained by...Ch. 10.2 - Find the exact area of the surface obtained by...Ch. 10.2 - Prob. 64ECh. 10.2 - Find the surface area generated by rotating the...Ch. 10.2 - Prob. 66ECh. 10.2 - Prob. 67ECh. 10.2 - Prob. 68ECh. 10.2 - Prob. 69ECh. 10.2 - Prob. 70ECh. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - Prob. 73ECh. 10.2 - A cow is tied to a silo with radius r by a rope...Ch. 10.3 - Plot the point whose polar coordinates are given....Ch. 10.3 - Prob. 2ECh. 10.3 - Plot the point whose polar coordinates are given....Ch. 10.3 - Plot the point whose polar coordinates are given....Ch. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Sketch the region in the plane consisting of...Ch. 10.3 - Prob. 8ECh. 10.3 - Sketch the region in the plane consisting of...Ch. 10.3 - Prob. 10ECh. 10.3 - Sketch the region in the plane consisting of...Ch. 10.3 - Prob. 12ECh. 10.3 - Find the distance between the points with polar...Ch. 10.3 - Prob. 14ECh. 10.3 - Identify the curve by finding a Cartesian equation...Ch. 10.3 - Prob. 16ECh. 10.3 - Identify the curve by finding a Cartesian equation...Ch. 10.3 - Identify the curve by finding a Cartesian equation...Ch. 10.3 - Identify the curve by finding a Cartesian equation...Ch. 10.3 - Prob. 20ECh. 10.3 - Find a polar equation for the curve represented by...Ch. 10.3 - Find a polar equation for the curve represented by...Ch. 10.3 - Prob. 23ECh. 10.3 - Prob. 24ECh. 10.3 - Prob. 25ECh. 10.3 - Find a polar equation for the curve represented by...Ch. 10.3 - Prob. 27ECh. 10.3 - Prob. 28ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 32ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 34ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 44ECh. 10.3 - Sketch the curve with the given polar equation by...Ch. 10.3 - Prob. 46ECh. 10.3 - Prob. 47ECh. 10.3 - Prob. 48ECh. 10.3 - Prob. 49ECh. 10.3 - Show that the curve r = 2 csc (also a conchoid)...Ch. 10.3 - Show that the curve r = sin tan (called a...Ch. 10.3 - Sketch the curve (x2 + y2)3 = 4x2y2.Ch. 10.3 - (a) In Example 11 the graphs suggest that the...Ch. 10.3 - Prob. 54ECh. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the slope of the tangent line to the given...Ch. 10.3 - Find the points on the given curve where the...Ch. 10.3 - Find the points on the given curve where the...Ch. 10.3 - Find the points on the given curve where the...Ch. 10.3 - Prob. 64ECh. 10.3 - Prob. 65ECh. 10.3 - Show that the curves r = a sin and r = a cos ...Ch. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Use a graphing device to graph the polar curve....Ch. 10.3 - Prob. 70ECh. 10.3 - Prob. 71ECh. 10.3 - Prob. 72ECh. 10.3 - Prob. 73ECh. 10.3 - Prob. 74ECh. 10.3 - Prob. 75ECh. 10.3 - Prob. 76ECh. 10.3 - Let P be any point (except the origin) on the...Ch. 10.3 - Prob. 78ECh. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the region that is bounded by the...Ch. 10.4 - Find the area of the shaded region. 5.Ch. 10.4 - Find the area of the shaded region. 6.Ch. 10.4 - Find the area of the shaded region. 7.Ch. 10.4 - Find the area of the shaded region. 8.Ch. 10.4 - Sketch the curve and find the area that it...Ch. 10.4 - Sketch the curve and find the area that it...Ch. 10.4 - Sketch the curve and find the area that it...Ch. 10.4 - Sketch the curve and find the area that it...Ch. 10.4 - Graph the curve and find the area that it...Ch. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Find the area of the region enclosed by one loop...Ch. 10.4 - Find the area enclosed by the loop of the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside the...Ch. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Find the area of the region that lies inside both...Ch. 10.4 - Prob. 34ECh. 10.4 - Find the area inside the larger loop and outside...Ch. 10.4 - Find the area between a large loop and the...Ch. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Prob. 40ECh. 10.4 - Find all points of intersection of the given...Ch. 10.4 - Prob. 42ECh. 10.4 - The points of intersection of the cardioid r = 1 +...Ch. 10.4 - When recording live performances, sound engineers...Ch. 10.4 - Find the exact length of the polar curve. 45. r =...Ch. 10.4 - Find the exact length of the polar curve. 46. r =...Ch. 10.4 - Find the exact length of the polar curve. 47. r =...Ch. 10.4 - Find the exact length of the polar curve. 48. r =...Ch. 10.4 - Find the exact length of the curve. Use a graph to...Ch. 10.4 - Find the exact length of the curve. Use a graph to...Ch. 10.4 - Use a calculator to find the length of the curve...Ch. 10.4 - Prob. 52ECh. 10.4 - Prob. 53ECh. 10.4 - Prob. 54ECh. 10.4 - (a) Use Formula 10.2.6 to show that the area of...Ch. 10.4 - Prob. 56ECh. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Prob. 4ECh. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Prob. 6ECh. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Find the vertex, focus, and directrix of the...Ch. 10.5 - Find an equation of the parabola. Then find the...Ch. 10.5 - Find an equation of the parabola. Then find the...Ch. 10.5 - Find the vertices and foci of the ellipse and...Ch. 10.5 - Prob. 12ECh. 10.5 - Find the vertices and foci of the ellipse and...Ch. 10.5 - Prob. 14ECh. 10.5 - Find the vertices and foci of the ellipse and...Ch. 10.5 - Find the vertices and foci of the ellipse and...Ch. 10.5 - Prob. 17ECh. 10.5 - Prob. 18ECh. 10.5 - Prob. 19ECh. 10.5 - Prob. 20ECh. 10.5 - Prob. 21ECh. 10.5 - Prob. 22ECh. 10.5 - Prob. 23ECh. 10.5 - Prob. 24ECh. 10.5 - Identify the type of conic section whose equation...Ch. 10.5 - Identify the type of conic section whose equation...Ch. 10.5 - Prob. 27ECh. 10.5 - Prob. 28ECh. 10.5 - Prob. 29ECh. 10.5 - Identify the type of conic section whose equation...Ch. 10.5 - Prob. 31ECh. 10.5 - Find an equation for the conic that satisfies the...Ch. 10.5 - Prob. 33ECh. 10.5 - Prob. 34ECh. 10.5 - Prob. 35ECh. 10.5 - Prob. 36ECh. 10.5 - Prob. 37ECh. 10.5 - Find an equation for the conic that satisfies the...Ch. 10.5 - Prob. 39ECh. 10.5 - Prob. 40ECh. 10.5 - Prob. 41ECh. 10.5 - Prob. 42ECh. 10.5 - Prob. 43ECh. 10.5 - Prob. 44ECh. 10.5 - Prob. 45ECh. 10.5 - Prob. 46ECh. 10.5 - Prob. 47ECh. 10.5 - Prob. 48ECh. 10.5 - The point in a lunar orbit nearest the surface of...Ch. 10.5 - A cross-section of a parabolic reflector is shown...Ch. 10.5 - The LORAN (LOng RAnge Navigation) radio navigation...Ch. 10.5 - Use the definition of a hyperbola to derive...Ch. 10.5 - Show that the function defined by the upper branch...Ch. 10.5 - Find an equation for the ellipse with foci (1, 1)...Ch. 10.5 - Determine the type of curve represented by the...Ch. 10.5 - Prob. 56ECh. 10.5 - Prob. 57ECh. 10.5 - Prob. 58ECh. 10.5 - Prob. 59ECh. 10.5 - Prob. 60ECh. 10.5 - Find the area of the region enclosed by the...Ch. 10.5 - Prob. 62ECh. 10.5 - Find the centroid of the region enclosed by the...Ch. 10.5 - Prob. 64ECh. 10.5 - Prob. 65ECh. 10.5 - Let P(x1, y1) be a point on the hyperbola x2/a2 ...Ch. 10.6 - Prob. 1ECh. 10.6 - Prob. 2ECh. 10.6 - Prob. 3ECh. 10.6 - Prob. 4ECh. 10.6 - Prob. 5ECh. 10.6 - Prob. 6ECh. 10.6 - Prob. 7ECh. 10.6 - Prob. 8ECh. 10.6 - Prob. 9ECh. 10.6 - Prob. 10ECh. 10.6 - Prob. 11ECh. 10.6 - Prob. 12ECh. 10.6 - Prob. 13ECh. 10.6 - Prob. 14ECh. 10.6 - Prob. 15ECh. 10.6 - Prob. 16ECh. 10.6 - Prob. 17ECh. 10.6 - Prob. 18ECh. 10.6 - Prob. 19ECh. 10.6 - Prob. 20ECh. 10.6 - Prob. 21ECh. 10.6 - Prob. 22ECh. 10.6 - Prob. 23ECh. 10.6 - Prob. 24ECh. 10.6 - Prob. 25ECh. 10.6 - Jupiter's orbit has eccentricity 0.048 and the...Ch. 10.6 - The orbit of Halleys comet, last seen in 1986 and...Ch. 10.6 - Prob. 28ECh. 10.6 - Prob. 29ECh. 10.6 - Prob. 30ECh. 10.6 - Prob. 31ECh. 10 - (a) What is a parametric curve? (b) How do you...Ch. 10 - Prob. 2RCCCh. 10 - Prob. 3RCCCh. 10 - Prob. 4RCCCh. 10 - Prob. 5RCCCh. 10 - Prob. 6RCCCh. 10 - Prob. 7RCCCh. 10 - Prob. 8RCCCh. 10 - (a) What is the eccentricity of a conic section?...Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Prob. 5RQCh. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Determine whether the statement is true or false....Ch. 10 - Prob. 1RECh. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 6RECh. 10 - Prob. 7RECh. 10 - Prob. 8RECh. 10 - Prob. 9RECh. 10 - Prob. 10RECh. 10 - Prob. 11RECh. 10 - Sketch the polar curve. 12. r = 3 + cos 3Ch. 10 - Prob. 13RECh. 10 - Prob. 14RECh. 10 - Prob. 15RECh. 10 - Prob. 16RECh. 10 - Prob. 17RECh. 10 - Prob. 18RECh. 10 - The curve with polar equation r = (sin )/ is...Ch. 10 - Prob. 20RECh. 10 - Prob. 21RECh. 10 - Prob. 22RECh. 10 - Prob. 23RECh. 10 - Prob. 24RECh. 10 - Prob. 25RECh. 10 - Prob. 26RECh. 10 - Prob. 27RECh. 10 - Prob. 28RECh. 10 - Prob. 29RECh. 10 - Prob. 30RECh. 10 - Find the area enclosed by the curve r2 = 9 cos 5.Ch. 10 - Prob. 32RECh. 10 - Prob. 33RECh. 10 - Prob. 34RECh. 10 - Find the area of the region that lies inside both...Ch. 10 - Find the area of the region that lies inside the...Ch. 10 - Prob. 37RECh. 10 - Prob. 38RECh. 10 - Prob. 39RECh. 10 - Prob. 40RECh. 10 - Prob. 41RECh. 10 - Prob. 42RECh. 10 - Prob. 43RECh. 10 - Prob. 44RECh. 10 - Prob. 45RECh. 10 - Prob. 46RECh. 10 - Prob. 47RECh. 10 - Prob. 48RECh. 10 - Prob. 49RECh. 10 - Prob. 50RECh. 10 - Prob. 51RECh. 10 - Prob. 52RECh. 10 - Prob. 53RECh. 10 - Prob. 54RECh. 10 - Prob. 55RECh. 10 - Prob. 56RECh. 10 - In the figure the circle of radius a is...Ch. 10 - A curve called the folium of Descartes is defined...Ch. 10 - The outer circle in the figure has radius 1 and...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Four bugs are placed at the four corners of a...Ch. 10 - Prob. 5PCh. 10 - A circle C of radius 2r has its center at the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY