![Precalculus with Limits](https://www.bartleby.com/isbn_cover_images/9781133947202/9781133947202_largeCoverImage.gif)
Concept explainers
(a)
Write the area of the ellipse as a function of
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 69E
Area=
Explanation of Solution
Given:
The general form of the ellipse as
Also,
The area of the ellipse is given as
To express the area in terms of the variable a.
From equation (1)
Substituting the value of B in the expression for area,
Area=
(b)
Find the equation of an ellipse with an area of 264 square centimeters.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 69E
The general equation,
Explanation of Solution
Given:
To find the equation of an ellipse with an area of 264 square centimeters.
Substituting this value in the expression for area,
This gives
Also,
Substituting the values of a and b in the general equation,
(c)
Complete the table using your equation from part (a). Then make a conjecture about the shape of the ellipse with maximum area.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 69E
| 8 | 9 | 10 | 11 | 12 | 13 |
A | 301.6 | 311.0 | 314.2 | 311.0 | 301.6 | 285.9 |
Explanation of Solution
Given:
| 8 | 9 | 10 | 11 | 12 | 13 |
A | 301.6 | 311.0 | 314.2 | 311.0 | 301.6 | 285.9 |
The various values of a are given.
From the above table the maximum area occurs at NA=10
In this case, both a and b turn out to be 10.
Thus, a circle has maximum area.
(d)
To graph the area function using a graphing utility.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 69E
Graph is shown below.
The peak of the curve occurs at
Explanation of Solution
Given:
The area function is given as
The area function is given as
The graph comes out to be
The peak of the curve occurs at
Chapter 10 Solutions
Precalculus with Limits
- 3) If a is a positive number, what is the value of the following double integral? 2a Love Lv 2ay-y² .x2 + y2 dadyarrow_forward16. Solve each of the following equations for x. (a) 42x+1 = 64 (b) 27-3815 (c) 92. 27² = 3-1 (d) log x + log(x - 21) = 2 (e) 3 = 14 (f) 2x+1 = 51-2xarrow_forward11. Find the composition fog and gof for the following functions. 2 (a) f(x) = 2x+5, g(x) = x² 2 (b) f(x) = x²+x, g(x) = √√x 1 (c) f(x) = -1/2) 9 9(x) = х = - Xarrow_forward
- practice problem please help!arrow_forward13. A restaurant will serve a banquet at a cost of $20 per person for the first 50 people and $15 for person for each additional person. (a) Find a function C giving the cost of the banquet depending on the number of people p attending. (b) How many people can attend the banquet for $2000?arrow_forwardAlt Fn Ctrl 12. Find functions f and g such that h(x) = (fog)(x). (a) h(x) = (x² + 2)² x+1 (b) h(x) = 5 3arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)