
Elementary Technical Mathematics
11th Edition
ISBN: 9781285199191
Author: Dale Ewen, C. Robert Nelson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.3, Problem 57E
Factor each trinomial completely:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please ensure that all parts of the question are answered thoroughly and clearly. Include a diagram to help explain answers. Make sure the explanation is easy to follow. Would appreciate work done written on paper. Thank you.
matrix 2
matrix 1
Chapter 10 Solutions
Elementary Technical Mathematics
Ch. 10.1 - Factor: 4a+4Ch. 10.1 - Factor: 3x6Ch. 10.1 - Factor: bx+byCh. 10.1 - Factor: 918yCh. 10.1 - Factor: 15b20Ch. 10.1 - Factor: 12ab+30acCh. 10.1 - Factor: x27xCh. 10.1 - Factor: 3x26xCh. 10.1 - Factor: a24aCh. 10.1 - Factor: 7xy21y
Ch. 10.1 - Factor: 4n28nCh. 10.1 - Factor: 10x2+5xCh. 10.1 - Factor: 10x2+25xCh. 10.1 - Factor: y28yCh. 10.1 - Factor: 3r26rCh. 10.1 - Factor: x3+13x2+25xCh. 10.1 - Factor: 4x4+8x3+12x2Ch. 10.1 - Factor: 9x415x218xCh. 10.1 - Factor: 9a29ax2Ch. 10.1 - Factor: aa3Ch. 10.1 - Factor: 10x+10y10zCh. 10.1 - Factor: 2x22xCh. 10.1 - Factor: 3y6Ch. 10.1 - Factor: y3y2Ch. 10.1 - Factor: 14xy7x2y2Ch. 10.1 - Factor: 25a225b2Ch. 10.1 - Factor: 12x2m7mCh. 10.1 - Factor: 90r210R2Ch. 10.1 - Factor: 60ax12aCh. 10.1 - Factor: 2x2100x3Ch. 10.1 - Factor: 52m2n213mnCh. 10.1 - Factor: 40x8x3+4x4Ch. 10.1 - Factor: 52m214m+2Ch. 10.1 - Factor: 27x354xCh. 10.1 - Factor: 36y218y3+54y4Ch. 10.1 - Factor: 20y310y2+5yCh. 10.1 - Factor: 6m612m2+3mCh. 10.1 - Factor: 16x332x216xCh. 10.1 - Factor: 4x2y36x2y410x2y5Ch. 10.1 - Factor: 18x3y30x4y+48xyCh. 10.1 - Factor: 3a2b2c2+27a3b3c381abcCh. 10.1 - Factor: 15x2yz420x3y2z2+25x2y3z2Ch. 10.1 - Factor: 4x3z48x2y2z3+12xyz2Ch. 10.1 - Factor: 18a2b2c2+24ab2c230a2c2Ch. 10.2 - Find each product mentally: (x+5)(x+2)Ch. 10.2 - Find each product mentally: (x+3)(2x+7)Ch. 10.2 - Find each product mentally: (2x+3)(3x+4)Ch. 10.2 - Find each product mentally: (x+3)(x+18)Ch. 10.2 - Find each product mentally: (x5)(x6)Ch. 10.2 - Find each product mentally: (x9)(x8)Ch. 10.2 - Find each product mentally: (x12)(x2)Ch. 10.2 - Find each product mentally: (x9)(x4)Ch. 10.2 - Find each product mentally: (x+8)(2x+3)Ch. 10.2 - Find each product mentally: (3x7)(2x5)Ch. 10.2 - Find each product mentally: (x+6)(x2)Ch. 10.2 - Find each product mentally: (x7)(x3)Ch. 10.2 - Find each product mentally: (x9)(x10)Ch. 10.2 - Find each product mentally: (x9)(x+10)Ch. 10.2 - Find each product mentally: (x12)(x+6)Ch. 10.2 - Find each product mentally: (2x+7)(4x5)Ch. 10.2 - Find each product mentally: (2x7)(4x+5)Ch. 10.2 - Prob. 18ECh. 10.2 - Find each product mentally: (2x+5)(4x7)Ch. 10.2 - Find each product mentally: (6x+5)(5x1)Ch. 10.2 - Find each product mentally: (7x+3)(2x+5)Ch. 10.2 - Find each product mentally: (5x7)(2x+1)Ch. 10.2 - Find each product mentally: (x9)(3x+8)Ch. 10.2 - Find each product mentally: (x8)(2x+9)Ch. 10.2 - Find each product mentally: (6x+5)(x+7)Ch. 10.2 - Find each product mentally: (16x+3)(x1)Ch. 10.2 - Find each product mentally: (13x4)(13x4)Ch. 10.2 - Find each product mentally: (12x+1)(12x+5)Ch. 10.2 - Find each product mentally: (10x+7)(12x3)Ch. 10.2 - Find each product mentally: (10x7)(12x+3)Ch. 10.2 - Find each product mentally: (10x7)(10x3)Ch. 10.2 - Find each product mentally: (10x+7)(10x+3)Ch. 10.2 - Find each product mentally: (2x3)(2x5)Ch. 10.2 - Find each product mentally: (2x+3)(2x+5)Ch. 10.2 - Find each product mentally: (2x3)(2x+5)Ch. 10.2 - Find each product mentally: (2x+3)(2x5)Ch. 10.2 - Find each product mentally: (3x8)(2x+7)Ch. 10.2 - Prob. 38ECh. 10.2 - Find each product mentally: (3x+8)(2x+7)Ch. 10.2 - Find each product mentally: (3x8)(2x7)Ch. 10.2 - Find each product mentally: (8x5)(2x+3)Ch. 10.2 - Find each product mentally: (x7)(x+5)Ch. 10.2 - Find each product mentally: (y7)(2y+3)Ch. 10.2 - Find each product mentally: (m9)(m+2)Ch. 10.2 - Find each product mentally: (3n6y)(2n+5y)Ch. 10.2 - Find each product mentally: (6ab)(2a+3b)Ch. 10.2 - Find each product mentally: (4xy)(2x+7y)Ch. 10.2 - Find each product mentally: (8x12)(2x+3)Ch. 10.2 - Find each product mentally: (12x8)(14x6)Ch. 10.2 - Find each product mentally: (23x6)(13x+9)Ch. 10.3 - Factor each trinomial completely: x2+6x+8Ch. 10.3 - Factor each trinomial completely: x2+8x+15Ch. 10.3 - Factor each trinomial completely: y2+9y+20Ch. 10.3 - Factor each trinomial completely: 2w2+20w+32Ch. 10.3 - Factor each trinomial completely: 3r2+30r+75Ch. 10.3 - Factor each trinomial completely: a2+14a+24Ch. 10.3 - Factor each trinomial completely: b2+11b+30Ch. 10.3 - Factor each trinomial completely: c2+21c+54Ch. 10.3 - Factor each trinomial completely: x2+17x+72Ch. 10.3 - Factor each trinomial completely: y2+18y+81Ch. 10.3 - Factor each trinomial completely: 5a2+35a+60Ch. 10.3 - Factor each trinomial completely: r2+12r+27Ch. 10.3 - Factor each trinomial completely: x27x+12Ch. 10.3 - Factor each trinomial completely: y26y+9Ch. 10.3 - Factor each trinomial completely: 2a218a+28Ch. 10.3 - Factor each trinomial completely: c29c+18Ch. 10.3 - Factor each trinomial completely: 3x230x+63Ch. 10.3 - Factor each trinomial completely: r212r+35Ch. 10.3 - Factor each trinomial completely: w213w+42Ch. 10.3 - Factor each trinomial completely: x214x+49Ch. 10.3 - Factor each trinomial completely: x219x+90Ch. 10.3 - Factor each trinomial completely: 4x284x+80Ch. 10.3 - Factor each trinomial completely: t212t+20Ch. 10.3 - Factor each trinomial completely: b215b+54Ch. 10.3 - Factor each trinomial completely: x2+2x8Ch. 10.3 - Factor each trinomial completely: x22x15Ch. 10.3 - Factor each trinomial completely: y2+y20Ch. 10.3 - Prob. 28ECh. 10.3 - Factor each trinomial completely: a2+5a24Ch. 10.3 - Factor each trinomial completely: b2+b30Ch. 10.3 - Factor each trinomial completely: c215c54Ch. 10.3 - Factor each trinomial completely: b26b72Ch. 10.3 - Factor each trinomial completely: 3x23x36Ch. 10.3 - Factor each trinomial completely: a2+5a14Ch. 10.3 - Factor each trinomial completely: c2+3c18Ch. 10.3 - Factor each trinomial completely: x24x21Ch. 10.3 - Factor each trinomial completely: y2+17y+42Ch. 10.3 - Factor each trinomial completely: m218m+72Ch. 10.3 - Factor each trinomial completely: r22r35Ch. 10.3 - Factor each trinomial completely: x2+11x42Ch. 10.3 - Factor each trinomial completely: m222m+40Ch. 10.3 - Factor each trinomial completely: y2+17y+70Ch. 10.3 - Factor each trinomial completely: x29x90Ch. 10.3 - Factor each trinomial completely: x28x+15Ch. 10.3 - Factor each trinomial completely: a2+27a+92Ch. 10.3 - Factor each trinomial completely: x2+17x110Ch. 10.3 - Factor each trinomial completely: 2a212a110Ch. 10.3 - Factor each trinomial completely: y214y+40Ch. 10.3 - Factor each trinomial completely: a2+29a+100Ch. 10.3 - Factor each trinomial completely: y2+14y120Ch. 10.3 - Factor each trinomial completely: y214y95Ch. 10.3 - Factor each trinomial completely: b2+20b+36Ch. 10.3 - Factor each trinomial completely: y218y+32Ch. 10.3 - Factor each trinomial completely: x28x128Ch. 10.3 - Factor each trinomial completely: 7x2+7x14Ch. 10.3 - Factor each trinomial completely: 2x26x36Ch. 10.3 - Factor each trinomial completely: 6x2+12x6Ch. 10.3 - Factor each trinomial completely: 4x2+16x+16Ch. 10.3 - Factor each trinomial completely: y212y+35Ch. 10.3 - Factor each trinomial completely: a2+16a+63Ch. 10.3 - Factor each trinomial completely: a2+2a63Ch. 10.3 - Factor each trinomial completely: y2y42Ch. 10.3 - Factor each trinomial completely: x2+18x+56Ch. 10.3 - Factor each trinomial completely: x2+11x26Ch. 10.3 - Factor each trinomial completely: 2y236y+90Ch. 10.3 - Factor each trinomial completely: ax2+2ax+aCh. 10.3 - Factor each trinomial completely: 3xy218xy+27xCh. 10.3 - Factor each trinomial completely: x3x2156xCh. 10.3 - Factor each trinomial completely: x2+30x+225Ch. 10.3 - Factor each trinomial completely: x22x360Ch. 10.3 - Factor each trinomial completely: x226x+153Ch. 10.3 - Factor each trinomial completely: x2+8x384Ch. 10.3 - Factor each trinomial completely: x2+28x+192Ch. 10.3 - Factor each trinomial completely: x2+3x154Ch. 10.3 - Factor each trinomial completely: x2+14x176Ch. 10.3 - Factor each trinomial completely: x259x+798Ch. 10.3 - Factor each trinomial completely: 2a2b+4ab48bCh. 10.3 - Factor each trinomial completely: ax215ax+44aCh. 10.3 - Factor each trinomial completely: y2y72Ch. 10.3 - Factor each trinomial completely: x2+19x+60Ch. 10.4 - Find each product: (x+3)(x3)Ch. 10.4 - Find each product: (x+3)2Ch. 10.4 - Find each product: (a+5)(a5)Ch. 10.4 - Find each product: (y2+9)(y29)Ch. 10.4 - Find each product: (2b+11)(2b11)Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (100+3)(1003)Ch. 10.4 - Find each product: (90+2)(902)Ch. 10.4 - Find each product: (3y2+14)(3y214)Ch. 10.4 - Find each product: (y+8)2Ch. 10.4 - Find each product: (r12)2Ch. 10.4 - Find each product: (t+10)2Ch. 10.4 - Find each product: (4y+5)(4y5)Ch. 10.4 - Find each product: (200+5)(2005)Ch. 10.4 - Find each product: (xy4)2Ch. 10.4 - Find each product: (x2+y)(x2y)Ch. 10.4 - Find each product: (ab+d)2Ch. 10.4 - Find each product: (ab+c)(abc)Ch. 10.4 - Find each product: (z11)2Ch. 10.4 - Find each product: (x3+8)(x38)Ch. 10.4 - Find each product: (st7)2Ch. 10.4 - Find each product: (w+14)(w14)Ch. 10.4 - Find each product: (x+y2)(xy2)Ch. 10.4 - Find each product: (1x)2Ch. 10.4 - Find each product: (x+5)2Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (x+7)(x7)Ch. 10.4 - Find each product: (y12)(y+12)Ch. 10.4 - Find each product: (x3)2Ch. 10.4 - Find each product: (x+4)2Ch. 10.4 - Find each product: (ab+2)(ab2)Ch. 10.4 - Find each product: (m3)(m+3)Ch. 10.4 - Find each product: (x2+2)(x22)Ch. 10.4 - Find each product: (m+15)(m15)Ch. 10.4 - Find each product: (r15)2Ch. 10.4 - Find each product: (t+7a)2Ch. 10.4 - Find each product: (y35)2Ch. 10.4 - Find each product: (4x2)2Ch. 10.4 - Find each product: (10x)(10+x)Ch. 10.4 - Find each product: (ay23)(ay2+3)Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Prob. 8ECh. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.6 - Factor completely: 5x22812Ch. 10.6 - Factor completely: 4x24x3Ch. 10.6 - Factor completely: 10x229x+21Ch. 10.6 - Factor completely: 4x2+4x+1Ch. 10.6 - Factor completely: 12x228x+15Ch. 10.6 - Factor completely: 9x236x+32Ch. 10.6 - Factor completely: 8x2+26x45Ch. 10.6 - Factor completely: 4x2+15x4Ch. 10.6 - Factor completely: 16x211x5Ch. 10.6 - Factor completely: 6x2+3x3Ch. 10.6 - Factor completely: 12x216x16Ch. 10.6 - Factor completely: 10x235x+15Ch. 10.6 - Factor completely: 15y2y6Ch. 10.6 - Factor completely: 6y2+y2Ch. 10.6 - Factor completely: 8m210m3Ch. 10.6 - Factor completely: 2m27m30Ch. 10.6 - Factor completely: 35a22a1Ch. 10.6 - Factor completely: 12a228a+15Ch. 10.6 - Factor completely: 16y28y+1Ch. 10.6 - Factor completely: 25y2+20y+4Ch. 10.6 - Factor completely: 3x2+20x63Ch. 10.6 - Factor completely: 4x2+7x15Ch. 10.6 - Factor completely: 12b2+5b2Ch. 10.6 - Factor completely: 10b27b12Ch. 10.6 - Factor completely: 15y214y8Ch. 10.6 - Factor completely: 5y2+11y+2Ch. 10.6 - Factor completely: 90+17c3c2Ch. 10.6 - Prob. 28ECh. 10.6 - Factor completely: 6x213x+5Ch. 10.6 - Factor completely: 56229x+3Ch. 10.6 - Factor completely: 2y4+9y235Ch. 10.6 - Factor completely: 2y2+7y99Ch. 10.6 - Factor completely: 4b2+52b+169Ch. 10.6 - Factor completely: 6x219x+15Ch. 10.6 - Factor completely: 14x251x+40Ch. 10.6 - Factor completely: 42x413x240Ch. 10.6 - Factor completely: 28x3+140x2+175xCh. 10.6 - Factor completely: 24x354x221xCh. 10.6 - Factor completely: 10ab215ab175aCh. 10.6 - Factor completely: 40bx272bx70bCh. 10 - Prob. 1RCh. 10 - Find each product mentally: (x6)(x+6)Ch. 10 - Find each product mentally: (y+7)(y4)Ch. 10 - Find each product mentally: (2x+5)(2x9)Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (x4)(x9)Ch. 10 - Find each product mentally: (x3)2Ch. 10 - Find each product mentally: (2x6)2Ch. 10 - Find each product mentally: (15x2)2Ch. 10 - Factor each expression completely: 6a+6Ch. 10 - Factor each expression completely: 5x15Ch. 10 - Factor each expression completely: xy+2xzCh. 10 - Factor each expression completely: y4+17y318y2Ch. 10 - Factor each expression completely: y26y7Ch. 10 - Factor each expression completely: z2+18z+81Ch. 10 - Factor each expression completely: x2+10x+16Ch. 10 - Factor each expression completely: 4a2+4x2Ch. 10 - Factor each expression completely: x217x+72Ch. 10 - Factor each expression completely: x218x+81Ch. 10 - Factor each expression completely: x2+19x+60Ch. 10 - Factor each expression completely: y22y+1Ch. 10 - Factor each expression completely: x23x28Ch. 10 - Factor each expression completely: x24x96Ch. 10 - Factor each expression completely: x2+x110Ch. 10 - Factor each expression completely: x249Ch. 10 - Factor each expression completely: 16y29x2Ch. 10 - Factor each expression completely: x2144Ch. 10 - Factor each expression completely: 25x281y2Ch. 10 - Factor each expression completely: 4x224x364Ch. 10 - Factor each expression completely: 5x25x780Ch. 10 - Factor each expression completely: 2x2+11x+14Ch. 10 - Factor each expression completely: 12x219x+4Ch. 10 - Factor each expression completely: 30x2+7x15Ch. 10 - Factor each expression completely: 12x2+143x12Ch. 10 - Factor each expression completely: 4x26x+2Ch. 10 - Factor each expression completely: 36x249y2Ch. 10 - Factor each expression completely: 28x2+82x+30Ch. 10 - Factor each expression completely: 30x227x21Ch. 10 - Factor each expression completely: 4x34xCh. 10 - Factor each expression completely: 25y2100Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (2x8)(5x6)Ch. 10 - Find each product mentally: (2x8)(2x+8)Ch. 10 - Find each product mentally: (3x5)2Ch. 10 - Find each product mentally: (4x7)(2x+3)Ch. 10 - Find each product mentally: (9x7)(5x+4)Ch. 10 - Factor each expression completely: x2+4x+3Ch. 10 - Factor each expression completely: x212x+35Ch. 10 - Factor each expression completely: 6x27x90Ch. 10 - Factor each expression completely: 9x2+24x+16Ch. 10 - Factor each expression completely: x2+7x18Ch. 10 - Factor each expression completely: 4x225Ch. 10 - Factor each expression completely: 6x2+13x+6Ch. 10 - Factor each expression completely: 3x2y218x2y+27x2Ch. 10 - Factor each expression completely: 3x211x4Ch. 10 - Factor each expression completely: 15x219x10Ch. 10 - Factor each expression completely: 5x2+7x6Ch. 10 - Factor each expression completely: 3x23x6Ch. 10 - Factor each expression completely: 9x2121Ch. 10 - Factor each expression completely: 9x230x+25Ch. 10 - Perform the indicated operations and simplify:...Ch. 10 - Round 746.83 to the a. nearest tenth and b....Ch. 10 - Do as indicated and simplify: 2315+23Ch. 10 - Write 0.000318 in a. scientific notation and b....Ch. 10 - Change 625 g to kg.Ch. 10 - Change 7 m2 to ft2.Ch. 10 - Read the voltmeter scale in Illustration 1....Ch. 10 - Use the rules of measurement to multiply:...Ch. 10 - Combine like terms and simplify: 3(x2)4(23x)Ch. 10 - Combine like terms and simplify: (6a3b+2c)(2a3b+c)Ch. 10 - Solve: x34=2x5Ch. 10 - A rectangle is 5 m longer than it is wide. Its...Ch. 10 - Solve the proportion and round the result to three...Ch. 10 - A pulley is 18 in. in diameter, is rotating at 125...Ch. 10 - Complete the ordered-pair solutions of the...Ch. 10 - Solve for y: 3xy=5Ch. 10 - Draw the graph of 3x+4y=24Ch. 10 - Draw the graphs of 2xy=4 and x+3y=5. Find the...Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Solve each pair of linear equation: y=3x5x+3y=8Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Two rental automobiles were leased for a total of...Ch. 10 - Find each product mentally: (2x5)(3x+8)Ch. 10 - Find each product mentally: (5x7y)2Ch. 10 - Find each product mentally: (3x5)(5x7)Ch. 10 - Factor each expression completely: 7x363xCh. 10 - Factor each expression completely: 4x3+12x2Ch. 10 - Factor each expression completely: 2x27x4
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Selon une économiste d’une société financière, les dépenses moyennes pour « meubles et appareils de maison » ont été moins importantes pour les ménages de la région de Montréal, que celles de la région de Québec. Un échantillon aléatoire de 14 ménages pour la région de Montréal et de 16 ménages pour la région Québec est tiré et donne les données suivantes, en ce qui a trait aux dépenses pour ce secteur d’activité économique. On suppose que les données de chaque population sont distribuées selon une loi normale. Nous sommes intéressé à connaitre si les variances des populations sont égales.a) Faites le test d’hypothèse sur deux variances approprié au seuil de signification de 1 %. Inclure les informations suivantes : i. Hypothèse / Identification des populationsii. Valeur(s) critique(s) de Fiii. Règle de décisioniv. Valeur du rapport Fv. Décision et conclusion b) A partir des résultats obtenus en a), est-ce que l’hypothèse d’égalité des variances pour cette…arrow_forwardQ4 4 Points 3 Let A = 5 -1 Let S : R³ → R² be the linear transformation whose standard matrix is A. Let U : R² → R³ be the linear transformation whose standard matrix is AT (the transpose of A). Let P: R³ → R³ be the linear transformation which first applies S and then applies U. Let Q: R² → R² be the linear transformation which first applies U and then applies S. Find the standard matrix of P and the standard matrix of Q. Clearly indicate which is which in your work. Please select file(s) Select file(s) Save Answerarrow_forwardQ3 4 Points Let T: R4 → R³ be the linear transformation defined by the formula 11 x1+x3+2x4 T x2 + 3 + 24 Is −1 +222 +23 I i. (2 points) Find the standard matrix of T. ii (2 points) Determine if I is one-to-one and determine if I' is onto. Please select file(s) Select file(s)arrow_forward
- The three right triangles below are similar. The acute angles LL, LR, and ZZ are all approximately measured to be 66.9°. The side lengths for each triangle are as follows. Note that the triangles are not drawn to scale. Z 20.17 m 60.51 m 66.9° 7.92 m 66.9° 80.68 m 66.9° 23.76 m 31.68 m Take one 18.55 m K P 55.65 m X 74.2 m Y (a) For each triangle, find the ratio of the length of the side opposite 66.9° to the length of the hypotenuse. Round your answers to the nearest hundredth. JK JL PQ PR XY ☐ XZ (b) Use the ALEKS Calculator to find sin 66.9°, cos 66.9°, and tan 66.9°. Round your answers to the nearest hundredth. sin 66.9° = ☐ cos 66.9° tan 66.9° = ☐ (c) Which trigonometric function gives each ratio of sides in part (a)? Osine Ocosine Otangent none of thesearrow_forwardAccording to an economist from a financial company, the average expenditures on "furniture and household appliances" have been lower for households in the Montreal area than those in the Quebec region. A random sample of 14 households from the Montreal region and 16 households from the Quebec region was taken, providing the following data regarding expenditures in this economic sector. It is assumed that the data from each population are distributed normally. We are interested in knowing if the variances of the populations are equal. a) Perform the appropriate hypothesis test on two variances at a significance level of 1%. Include the following information: i. Hypothesis / Identification of populations ii. Critical F-value(s) iii. Decision rule iv. F-ratio value v. Decision and conclusion b) Based on the results obtained in a), is the hypothesis of equal variances for this socio-economic characteristic measured in these two populations upheld? c) Based on the results obtained in a),…arrow_forwardPlease plot graphs to represent the functionsarrow_forward
- EXAMPLE 6.2 In Example 5.4, we considered the random variables Y₁ (the proportional amount of gasoline stocked at the beginning of a week) and Y2 (the proportional amount of gasoline sold during the week). The joint density function of Y₁ and Y2 is given by 3y1, 0 ≤ y2 yı≤ 1, f(y1, y2) = 0, elsewhere. Find the probability density function for U = Y₁ - Y₂, the proportional amount of gasoline remaining at the end of the week. Use the density function of U to find E(U).arrow_forward7.20 a If U has a x² distribution with v df, find E(U) and V (U). b Using the results of Theorem 7.3, find E(S2) and V (S2) when Y₁, Y2,..., Y, is a random sample from a normal distribution with mean μ and variance o².arrow_forwardAccording to a survey conducted by the American Bar Association, 1 in every 410 Americans is a lawyer, but 1 in every 64 residents of Washington, D.C., is a lawyer. a If you select a random sample of 1500 Americans, what is the approximate probability that the sample contains at least one lawyer? b If the sample is selected from among the residents of Washington, D.C., what is the ap- proximate probability that the sample contains more than 30 lawyers? c If you stand on a Washington, D.C., street corner and interview the first 1000 persons who walked by and 30 say that they are lawyers, does this suggest that the density of lawyers passing the corner exceeds the density within the city? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License