Elementary Technical Mathematics
11th Edition
ISBN: 9781285199191
Author: Dale Ewen, C. Robert Nelson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 8CR
Use the rules of measurement to multiply:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. (5 points) Let f(x) =
=
-
-
- x² − 3x+7. Find the local minimum and maximum point(s)
of f(x), and write them in the form (a, b), specifying whether each point is a minimum
or maximum. Coordinates should be kept in fractions.
Additionally, provide in your answer if f(x) has an absolute minimum or maximum
over its entire domain with their corresponding values. Otherwise, state that there is no
absolute maximum or minimum. As a reminder, ∞ and -∞ are not considered absolute
maxima and minima respectively.
Let h(x, y, z)
=
—
In (x) — z
y7-4z
-
y4
+ 3x²z — e²xy ln(z) + 10y²z.
(a) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to x, 2 h(x, y, z).
მ
(b) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to y, 2 h(x, y, z).
math help plz
Chapter 10 Solutions
Elementary Technical Mathematics
Ch. 10.1 - Factor: 4a+4Ch. 10.1 - Factor: 3x6Ch. 10.1 - Factor: bx+byCh. 10.1 - Factor: 918yCh. 10.1 - Factor: 15b20Ch. 10.1 - Factor: 12ab+30acCh. 10.1 - Factor: x27xCh. 10.1 - Factor: 3x26xCh. 10.1 - Factor: a24aCh. 10.1 - Factor: 7xy21y
Ch. 10.1 - Factor: 4n28nCh. 10.1 - Factor: 10x2+5xCh. 10.1 - Factor: 10x2+25xCh. 10.1 - Factor: y28yCh. 10.1 - Factor: 3r26rCh. 10.1 - Factor: x3+13x2+25xCh. 10.1 - Factor: 4x4+8x3+12x2Ch. 10.1 - Factor: 9x415x218xCh. 10.1 - Factor: 9a29ax2Ch. 10.1 - Factor: aa3Ch. 10.1 - Factor: 10x+10y10zCh. 10.1 - Factor: 2x22xCh. 10.1 - Factor: 3y6Ch. 10.1 - Factor: y3y2Ch. 10.1 - Factor: 14xy7x2y2Ch. 10.1 - Factor: 25a225b2Ch. 10.1 - Factor: 12x2m7mCh. 10.1 - Factor: 90r210R2Ch. 10.1 - Factor: 60ax12aCh. 10.1 - Factor: 2x2100x3Ch. 10.1 - Factor: 52m2n213mnCh. 10.1 - Factor: 40x8x3+4x4Ch. 10.1 - Factor: 52m214m+2Ch. 10.1 - Factor: 27x354xCh. 10.1 - Factor: 36y218y3+54y4Ch. 10.1 - Factor: 20y310y2+5yCh. 10.1 - Factor: 6m612m2+3mCh. 10.1 - Factor: 16x332x216xCh. 10.1 - Factor: 4x2y36x2y410x2y5Ch. 10.1 - Factor: 18x3y30x4y+48xyCh. 10.1 - Factor: 3a2b2c2+27a3b3c381abcCh. 10.1 - Factor: 15x2yz420x3y2z2+25x2y3z2Ch. 10.1 - Factor: 4x3z48x2y2z3+12xyz2Ch. 10.1 - Factor: 18a2b2c2+24ab2c230a2c2Ch. 10.2 - Find each product mentally: (x+5)(x+2)Ch. 10.2 - Find each product mentally: (x+3)(2x+7)Ch. 10.2 - Find each product mentally: (2x+3)(3x+4)Ch. 10.2 - Find each product mentally: (x+3)(x+18)Ch. 10.2 - Find each product mentally: (x5)(x6)Ch. 10.2 - Find each product mentally: (x9)(x8)Ch. 10.2 - Find each product mentally: (x12)(x2)Ch. 10.2 - Find each product mentally: (x9)(x4)Ch. 10.2 - Find each product mentally: (x+8)(2x+3)Ch. 10.2 - Find each product mentally: (3x7)(2x5)Ch. 10.2 - Find each product mentally: (x+6)(x2)Ch. 10.2 - Find each product mentally: (x7)(x3)Ch. 10.2 - Find each product mentally: (x9)(x10)Ch. 10.2 - Find each product mentally: (x9)(x+10)Ch. 10.2 - Find each product mentally: (x12)(x+6)Ch. 10.2 - Find each product mentally: (2x+7)(4x5)Ch. 10.2 - Find each product mentally: (2x7)(4x+5)Ch. 10.2 - Prob. 18ECh. 10.2 - Find each product mentally: (2x+5)(4x7)Ch. 10.2 - Find each product mentally: (6x+5)(5x1)Ch. 10.2 - Find each product mentally: (7x+3)(2x+5)Ch. 10.2 - Find each product mentally: (5x7)(2x+1)Ch. 10.2 - Find each product mentally: (x9)(3x+8)Ch. 10.2 - Find each product mentally: (x8)(2x+9)Ch. 10.2 - Find each product mentally: (6x+5)(x+7)Ch. 10.2 - Find each product mentally: (16x+3)(x1)Ch. 10.2 - Find each product mentally: (13x4)(13x4)Ch. 10.2 - Find each product mentally: (12x+1)(12x+5)Ch. 10.2 - Find each product mentally: (10x+7)(12x3)Ch. 10.2 - Find each product mentally: (10x7)(12x+3)Ch. 10.2 - Find each product mentally: (10x7)(10x3)Ch. 10.2 - Find each product mentally: (10x+7)(10x+3)Ch. 10.2 - Find each product mentally: (2x3)(2x5)Ch. 10.2 - Find each product mentally: (2x+3)(2x+5)Ch. 10.2 - Find each product mentally: (2x3)(2x+5)Ch. 10.2 - Find each product mentally: (2x+3)(2x5)Ch. 10.2 - Find each product mentally: (3x8)(2x+7)Ch. 10.2 - Prob. 38ECh. 10.2 - Find each product mentally: (3x+8)(2x+7)Ch. 10.2 - Find each product mentally: (3x8)(2x7)Ch. 10.2 - Find each product mentally: (8x5)(2x+3)Ch. 10.2 - Find each product mentally: (x7)(x+5)Ch. 10.2 - Find each product mentally: (y7)(2y+3)Ch. 10.2 - Find each product mentally: (m9)(m+2)Ch. 10.2 - Find each product mentally: (3n6y)(2n+5y)Ch. 10.2 - Find each product mentally: (6ab)(2a+3b)Ch. 10.2 - Find each product mentally: (4xy)(2x+7y)Ch. 10.2 - Find each product mentally: (8x12)(2x+3)Ch. 10.2 - Find each product mentally: (12x8)(14x6)Ch. 10.2 - Find each product mentally: (23x6)(13x+9)Ch. 10.3 - Factor each trinomial completely: x2+6x+8Ch. 10.3 - Factor each trinomial completely: x2+8x+15Ch. 10.3 - Factor each trinomial completely: y2+9y+20Ch. 10.3 - Factor each trinomial completely: 2w2+20w+32Ch. 10.3 - Factor each trinomial completely: 3r2+30r+75Ch. 10.3 - Factor each trinomial completely: a2+14a+24Ch. 10.3 - Factor each trinomial completely: b2+11b+30Ch. 10.3 - Factor each trinomial completely: c2+21c+54Ch. 10.3 - Factor each trinomial completely: x2+17x+72Ch. 10.3 - Factor each trinomial completely: y2+18y+81Ch. 10.3 - Factor each trinomial completely: 5a2+35a+60Ch. 10.3 - Factor each trinomial completely: r2+12r+27Ch. 10.3 - Factor each trinomial completely: x27x+12Ch. 10.3 - Factor each trinomial completely: y26y+9Ch. 10.3 - Factor each trinomial completely: 2a218a+28Ch. 10.3 - Factor each trinomial completely: c29c+18Ch. 10.3 - Factor each trinomial completely: 3x230x+63Ch. 10.3 - Factor each trinomial completely: r212r+35Ch. 10.3 - Factor each trinomial completely: w213w+42Ch. 10.3 - Factor each trinomial completely: x214x+49Ch. 10.3 - Factor each trinomial completely: x219x+90Ch. 10.3 - Factor each trinomial completely: 4x284x+80Ch. 10.3 - Factor each trinomial completely: t212t+20Ch. 10.3 - Factor each trinomial completely: b215b+54Ch. 10.3 - Factor each trinomial completely: x2+2x8Ch. 10.3 - Factor each trinomial completely: x22x15Ch. 10.3 - Factor each trinomial completely: y2+y20Ch. 10.3 - Prob. 28ECh. 10.3 - Factor each trinomial completely: a2+5a24Ch. 10.3 - Factor each trinomial completely: b2+b30Ch. 10.3 - Factor each trinomial completely: c215c54Ch. 10.3 - Factor each trinomial completely: b26b72Ch. 10.3 - Factor each trinomial completely: 3x23x36Ch. 10.3 - Factor each trinomial completely: a2+5a14Ch. 10.3 - Factor each trinomial completely: c2+3c18Ch. 10.3 - Factor each trinomial completely: x24x21Ch. 10.3 - Factor each trinomial completely: y2+17y+42Ch. 10.3 - Factor each trinomial completely: m218m+72Ch. 10.3 - Factor each trinomial completely: r22r35Ch. 10.3 - Factor each trinomial completely: x2+11x42Ch. 10.3 - Factor each trinomial completely: m222m+40Ch. 10.3 - Factor each trinomial completely: y2+17y+70Ch. 10.3 - Factor each trinomial completely: x29x90Ch. 10.3 - Factor each trinomial completely: x28x+15Ch. 10.3 - Factor each trinomial completely: a2+27a+92Ch. 10.3 - Factor each trinomial completely: x2+17x110Ch. 10.3 - Factor each trinomial completely: 2a212a110Ch. 10.3 - Factor each trinomial completely: y214y+40Ch. 10.3 - Factor each trinomial completely: a2+29a+100Ch. 10.3 - Factor each trinomial completely: y2+14y120Ch. 10.3 - Factor each trinomial completely: y214y95Ch. 10.3 - Factor each trinomial completely: b2+20b+36Ch. 10.3 - Factor each trinomial completely: y218y+32Ch. 10.3 - Factor each trinomial completely: x28x128Ch. 10.3 - Factor each trinomial completely: 7x2+7x14Ch. 10.3 - Factor each trinomial completely: 2x26x36Ch. 10.3 - Factor each trinomial completely: 6x2+12x6Ch. 10.3 - Factor each trinomial completely: 4x2+16x+16Ch. 10.3 - Factor each trinomial completely: y212y+35Ch. 10.3 - Factor each trinomial completely: a2+16a+63Ch. 10.3 - Factor each trinomial completely: a2+2a63Ch. 10.3 - Factor each trinomial completely: y2y42Ch. 10.3 - Factor each trinomial completely: x2+18x+56Ch. 10.3 - Factor each trinomial completely: x2+11x26Ch. 10.3 - Factor each trinomial completely: 2y236y+90Ch. 10.3 - Factor each trinomial completely: ax2+2ax+aCh. 10.3 - Factor each trinomial completely: 3xy218xy+27xCh. 10.3 - Factor each trinomial completely: x3x2156xCh. 10.3 - Factor each trinomial completely: x2+30x+225Ch. 10.3 - Factor each trinomial completely: x22x360Ch. 10.3 - Factor each trinomial completely: x226x+153Ch. 10.3 - Factor each trinomial completely: x2+8x384Ch. 10.3 - Factor each trinomial completely: x2+28x+192Ch. 10.3 - Factor each trinomial completely: x2+3x154Ch. 10.3 - Factor each trinomial completely: x2+14x176Ch. 10.3 - Factor each trinomial completely: x259x+798Ch. 10.3 - Factor each trinomial completely: 2a2b+4ab48bCh. 10.3 - Factor each trinomial completely: ax215ax+44aCh. 10.3 - Factor each trinomial completely: y2y72Ch. 10.3 - Factor each trinomial completely: x2+19x+60Ch. 10.4 - Find each product: (x+3)(x3)Ch. 10.4 - Find each product: (x+3)2Ch. 10.4 - Find each product: (a+5)(a5)Ch. 10.4 - Find each product: (y2+9)(y29)Ch. 10.4 - Find each product: (2b+11)(2b11)Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (100+3)(1003)Ch. 10.4 - Find each product: (90+2)(902)Ch. 10.4 - Find each product: (3y2+14)(3y214)Ch. 10.4 - Find each product: (y+8)2Ch. 10.4 - Find each product: (r12)2Ch. 10.4 - Find each product: (t+10)2Ch. 10.4 - Find each product: (4y+5)(4y5)Ch. 10.4 - Find each product: (200+5)(2005)Ch. 10.4 - Find each product: (xy4)2Ch. 10.4 - Find each product: (x2+y)(x2y)Ch. 10.4 - Find each product: (ab+d)2Ch. 10.4 - Find each product: (ab+c)(abc)Ch. 10.4 - Find each product: (z11)2Ch. 10.4 - Find each product: (x3+8)(x38)Ch. 10.4 - Find each product: (st7)2Ch. 10.4 - Find each product: (w+14)(w14)Ch. 10.4 - Find each product: (x+y2)(xy2)Ch. 10.4 - Find each product: (1x)2Ch. 10.4 - Find each product: (x+5)2Ch. 10.4 - Find each product: (x6)2Ch. 10.4 - Find each product: (x+7)(x7)Ch. 10.4 - Find each product: (y12)(y+12)Ch. 10.4 - Find each product: (x3)2Ch. 10.4 - Find each product: (x+4)2Ch. 10.4 - Find each product: (ab+2)(ab2)Ch. 10.4 - Find each product: (m3)(m+3)Ch. 10.4 - Find each product: (x2+2)(x22)Ch. 10.4 - Find each product: (m+15)(m15)Ch. 10.4 - Find each product: (r15)2Ch. 10.4 - Find each product: (t+7a)2Ch. 10.4 - Find each product: (y35)2Ch. 10.4 - Find each product: (4x2)2Ch. 10.4 - Find each product: (10x)(10+x)Ch. 10.4 - Find each product: (ay23)(ay2+3)Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Prob. 8ECh. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.5 - Factor completely. Check by multiplying the...Ch. 10.6 - Factor completely: 5x22812Ch. 10.6 - Factor completely: 4x24x3Ch. 10.6 - Factor completely: 10x229x+21Ch. 10.6 - Factor completely: 4x2+4x+1Ch. 10.6 - Factor completely: 12x228x+15Ch. 10.6 - Factor completely: 9x236x+32Ch. 10.6 - Factor completely: 8x2+26x45Ch. 10.6 - Factor completely: 4x2+15x4Ch. 10.6 - Factor completely: 16x211x5Ch. 10.6 - Factor completely: 6x2+3x3Ch. 10.6 - Factor completely: 12x216x16Ch. 10.6 - Factor completely: 10x235x+15Ch. 10.6 - Factor completely: 15y2y6Ch. 10.6 - Factor completely: 6y2+y2Ch. 10.6 - Factor completely: 8m210m3Ch. 10.6 - Factor completely: 2m27m30Ch. 10.6 - Factor completely: 35a22a1Ch. 10.6 - Factor completely: 12a228a+15Ch. 10.6 - Factor completely: 16y28y+1Ch. 10.6 - Factor completely: 25y2+20y+4Ch. 10.6 - Factor completely: 3x2+20x63Ch. 10.6 - Factor completely: 4x2+7x15Ch. 10.6 - Factor completely: 12b2+5b2Ch. 10.6 - Factor completely: 10b27b12Ch. 10.6 - Factor completely: 15y214y8Ch. 10.6 - Factor completely: 5y2+11y+2Ch. 10.6 - Factor completely: 90+17c3c2Ch. 10.6 - Prob. 28ECh. 10.6 - Factor completely: 6x213x+5Ch. 10.6 - Factor completely: 56229x+3Ch. 10.6 - Factor completely: 2y4+9y235Ch. 10.6 - Factor completely: 2y2+7y99Ch. 10.6 - Factor completely: 4b2+52b+169Ch. 10.6 - Factor completely: 6x219x+15Ch. 10.6 - Factor completely: 14x251x+40Ch. 10.6 - Factor completely: 42x413x240Ch. 10.6 - Factor completely: 28x3+140x2+175xCh. 10.6 - Factor completely: 24x354x221xCh. 10.6 - Factor completely: 10ab215ab175aCh. 10.6 - Factor completely: 40bx272bx70bCh. 10 - Prob. 1RCh. 10 - Find each product mentally: (x6)(x+6)Ch. 10 - Find each product mentally: (y+7)(y4)Ch. 10 - Find each product mentally: (2x+5)(2x9)Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (x4)(x9)Ch. 10 - Find each product mentally: (x3)2Ch. 10 - Find each product mentally: (2x6)2Ch. 10 - Find each product mentally: (15x2)2Ch. 10 - Factor each expression completely: 6a+6Ch. 10 - Factor each expression completely: 5x15Ch. 10 - Factor each expression completely: xy+2xzCh. 10 - Factor each expression completely: y4+17y318y2Ch. 10 - Factor each expression completely: y26y7Ch. 10 - Factor each expression completely: z2+18z+81Ch. 10 - Factor each expression completely: x2+10x+16Ch. 10 - Factor each expression completely: 4a2+4x2Ch. 10 - Factor each expression completely: x217x+72Ch. 10 - Factor each expression completely: x218x+81Ch. 10 - Factor each expression completely: x2+19x+60Ch. 10 - Factor each expression completely: y22y+1Ch. 10 - Factor each expression completely: x23x28Ch. 10 - Factor each expression completely: x24x96Ch. 10 - Factor each expression completely: x2+x110Ch. 10 - Factor each expression completely: x249Ch. 10 - Factor each expression completely: 16y29x2Ch. 10 - Factor each expression completely: x2144Ch. 10 - Factor each expression completely: 25x281y2Ch. 10 - Factor each expression completely: 4x224x364Ch. 10 - Factor each expression completely: 5x25x780Ch. 10 - Factor each expression completely: 2x2+11x+14Ch. 10 - Factor each expression completely: 12x219x+4Ch. 10 - Factor each expression completely: 30x2+7x15Ch. 10 - Factor each expression completely: 12x2+143x12Ch. 10 - Factor each expression completely: 4x26x+2Ch. 10 - Factor each expression completely: 36x249y2Ch. 10 - Factor each expression completely: 28x2+82x+30Ch. 10 - Factor each expression completely: 30x227x21Ch. 10 - Factor each expression completely: 4x34xCh. 10 - Factor each expression completely: 25y2100Ch. 10 - Find each product mentally: (x+8)(x3)Ch. 10 - Find each product mentally: (2x8)(5x6)Ch. 10 - Find each product mentally: (2x8)(2x+8)Ch. 10 - Find each product mentally: (3x5)2Ch. 10 - Find each product mentally: (4x7)(2x+3)Ch. 10 - Find each product mentally: (9x7)(5x+4)Ch. 10 - Factor each expression completely: x2+4x+3Ch. 10 - Factor each expression completely: x212x+35Ch. 10 - Factor each expression completely: 6x27x90Ch. 10 - Factor each expression completely: 9x2+24x+16Ch. 10 - Factor each expression completely: x2+7x18Ch. 10 - Factor each expression completely: 4x225Ch. 10 - Factor each expression completely: 6x2+13x+6Ch. 10 - Factor each expression completely: 3x2y218x2y+27x2Ch. 10 - Factor each expression completely: 3x211x4Ch. 10 - Factor each expression completely: 15x219x10Ch. 10 - Factor each expression completely: 5x2+7x6Ch. 10 - Factor each expression completely: 3x23x6Ch. 10 - Factor each expression completely: 9x2121Ch. 10 - Factor each expression completely: 9x230x+25Ch. 10 - Perform the indicated operations and simplify:...Ch. 10 - Round 746.83 to the a. nearest tenth and b....Ch. 10 - Do as indicated and simplify: 2315+23Ch. 10 - Write 0.000318 in a. scientific notation and b....Ch. 10 - Change 625 g to kg.Ch. 10 - Change 7 m2 to ft2.Ch. 10 - Read the voltmeter scale in Illustration 1....Ch. 10 - Use the rules of measurement to multiply:...Ch. 10 - Combine like terms and simplify: 3(x2)4(23x)Ch. 10 - Combine like terms and simplify: (6a3b+2c)(2a3b+c)Ch. 10 - Solve: x34=2x5Ch. 10 - A rectangle is 5 m longer than it is wide. Its...Ch. 10 - Solve the proportion and round the result to three...Ch. 10 - A pulley is 18 in. in diameter, is rotating at 125...Ch. 10 - Complete the ordered-pair solutions of the...Ch. 10 - Solve for y: 3xy=5Ch. 10 - Draw the graph of 3x+4y=24Ch. 10 - Draw the graphs of 2xy=4 and x+3y=5. Find the...Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Solve each pair of linear equation: y=3x5x+3y=8Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation: xy=63x+y=2Ch. 10 - Solve each pair of linear equation:...Ch. 10 - Two rental automobiles were leased for a total of...Ch. 10 - Find each product mentally: (2x5)(3x+8)Ch. 10 - Find each product mentally: (5x7y)2Ch. 10 - Find each product mentally: (3x5)(5x7)Ch. 10 - Factor each expression completely: 7x363xCh. 10 - Factor each expression completely: 4x3+12x2Ch. 10 - Factor each expression completely: 2x27x4
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 1. Show that, for any non-negative random variable X, EX+E+≥2, X E max X. 21.arrow_forwardFor each real-valued nonprincipal character x mod k, let A(n) = x(d) and F(x) = Σ : dn * Prove that F(x) = L(1,x) log x + O(1). narrow_forwardBy considering appropriate series expansions, e². e²²/2. e²³/3. .... = = 1 + x + x² + · ... when |x| < 1. By expanding each individual exponential term on the left-hand side the coefficient of x- 19 has the form and multiplying out, 1/19!1/19+r/s, where 19 does not divide s. Deduce that 18! 1 (mod 19).arrow_forwardProof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.arrow_forwardBy considering appropriate series expansions, ex · ex²/2 . ¸²³/³ . . .. = = 1 + x + x² +…… when |x| < 1. By expanding each individual exponential term on the left-hand side and multiplying out, show that the coefficient of x 19 has the form 1/19!+1/19+r/s, where 19 does not divide s.arrow_forwardLet 1 1 r 1+ + + 2 3 + = 823 823s Without calculating the left-hand side, prove that r = s (mod 823³).arrow_forwardFor each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward*Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forwardFor each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination of 826 and 1890.arrow_forwardLet 1 1+ + + + 2 3 1 r 823 823s Without calculating the left-hand side, Find one solution of the polynomial congruence 3x²+2x+100 = 0 (mod 343). Ts (mod 8233).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Use of ALGEBRA in REAL LIFE; Author: Fast and Easy Maths !;https://www.youtube.com/watch?v=9_PbWFpvkDc;License: Standard YouTube License, CC-BY
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY