Find and classify the critical points of z = (x² – 8x) (y² – 6y).
Local maximums:
Local minimums:
Saddle points:
-
For each classification, enter a list of ordered pairs (x, y) where the max/min/saddle occurs. Enter DNE if
there are no points for a classification.
Suppose that f(x, y, z) = (x − 2)² + (y – 2)² + (z − 2)² with 0 < x, y, z and x+y+z≤ 10.
1. The critical point of f(x, y, z) is at (a, b, c). Then
a =
b =
C =
2. Absolute minimum of f(x, y, z) is
and the absolute maximum is
The spread of an infectious disease is often modeled using the following autonomous differential equation:
dI
-
- BI(N − I) − MI,
dt
where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of
transmission, and μ is the rate at which people recover from infection.
Close
a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria.
b) (5 points) For the equilbria in part a), determine whether each is stable or unstable.
c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the
dt
function by hand.) Identify the equilibria as stable or unstable in the graph.
d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY