
Connect APR & PHILS Access Card for Anatomy & Physiology: An Integrative Approach
3rd Edition
ISBN: 9781260162455
Author: Michael McKinley Dr., Valerie O'Loughlin, Theresa Bidle
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.2, Problem 9LO
Summary Introduction
To explain: The organization of myofibrils, myofilaments, and sarcomeres.
Concept introduction: The primary cells that form a skeletal muscle are the skeletal muscle fibers. The skeletal muscle fibers have several specialized features. Like other cells, skeletal muscle cells have typical cellular features with the cytoplasm. The cytoplasm of skeletal muscle is specially known as sarcoplasm.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I want to be a super nutrition guy what u guys like recommend me
Please finish the chart at the bottom. Some of the answers have been filled in.
9. Aerobic respiration of one lipid molecule. The lipid is composed of one glycerol molecule connected to two
fatty acid tails. One fatty acid is 12 carbons long and the other fatty acid is 18 carbons long in the figure
below. Use the information below to determine how much ATP will be produced from the glycerol part of
the lipid. Then, in part B, determine how much ATP is produced from the 2 fatty acids of the lipid. Finally
put the NADH and ATP yields together from the glycerol and fatty acids (part A and B) to determine your
total number of ATP produced per lipid. Assume no other carbon source is available.
18 carbons
fatty acids
12 carbons
9
glycerol
A. Glycerol is broken down to glyceraldehyde 3-phosphate, a glycolysis intermediate via the following
pathway shown in the figure below. Notice this process costs one ATP but generates one FADH2. Continue
generating ATP with glyceraldehyde-3-phosphate using the standard pathway and aerobic respiration.
glycerol
glycerol-3-
phosphate…
Chapter 10 Solutions
Connect APR & PHILS Access Card for Anatomy & Physiology: An Integrative Approach
Ch. 10.1 - Prob. 1LOCh. 10.1 - What are the five major functions of skeletal...Ch. 10.1 - Prob. 2LOCh. 10.1 - Explain the skeletal muscle characteristics of...Ch. 10.2 - Prob. 3LOCh. 10.2 - Prob. 4LOCh. 10.2 - Prob. 5LOCh. 10.2 - Prob. 1WDTCh. 10.2 - Identify the location and function of these...Ch. 10.2 - Prob. 6LO
Ch. 10.2 - Prob. 7LOCh. 10.2 - LEARNING OBJECTIVES
8. Distinguish between thick...Ch. 10.2 - Prob. 9LOCh. 10.2 - Prob. 10LOCh. 10.2 - Prob. 2WDTCh. 10.2 - Draw and label a diagram of a sarcomere.Ch. 10.2 - Prob. 5WDLCh. 10.2 - Prob. 11LOCh. 10.2 - Prob. 12LOCh. 10.2 - Prob. 6WDLCh. 10.2 - Diagram and label the anatomic structures of a...Ch. 10.2 - Prob. 13LOCh. 10.2 - Prob. 8WDLCh. 10.3 - Prob. 14LOCh. 10.3 - What triggers the binding of synaptic vesicles to...Ch. 10.3 - Prob. 15LOCh. 10.3 - What two events are linked in the physiologic...Ch. 10.3 - Prob. 11WDLCh. 10.3 - Prob. 16LOCh. 10.3 - Prob. 3WDTCh. 10.3 - Prob. 12WDLCh. 10.3 - Describe the four processes that repeat in...Ch. 10.3 - What causes the release of the myosin head from...Ch. 10.3 - LEARNING OBJECTIVES
17. Discuss what happens to...Ch. 10.3 - Prob. 18LOCh. 10.3 - How do acetylcholinesterase and Ca2+ pumps...Ch. 10.4 - LEARNING OBJECTIVES
19. Describe how ATP is made...Ch. 10.4 - Prob. 20LOCh. 10.4 - Prob. 4WDTCh. 10.4 - Prob. 16WDLCh. 10.4 - What are the various means for making ATP...Ch. 10.4 - Prob. 21LOCh. 10.4 - Prob. 18WDLCh. 10.5 - Prob. 22LOCh. 10.5 - Prob. 19WDLCh. 10.5 - Prob. 23LOCh. 10.5 - Prob. 20WDLCh. 10.5 - Prob. 24LOCh. 10.5 - Prob. 21WDLCh. 10.6 - LEARNING OBJECTIVE
25. Describe what occurs in a...Ch. 10.6 - Prob. 5WDTCh. 10.6 - What events are occurring in a muscle that produce...Ch. 10.6 - Prob. 26LOCh. 10.6 - What is recruitment? Explain its importance in the...Ch. 10.6 - Prob. 27LOCh. 10.6 - Prob. 24WDLCh. 10.7 - Prob. 28LOCh. 10.7 - What is the function of skeletal muscle tone?Ch. 10.7 - LEARNING OBJECTIVE
29. Distinguish between...Ch. 10.7 - When you flex your biceps brachii while doing...Ch. 10.7 - LEARNING OBJECTIVE
30. Explain the length-tension...Ch. 10.7 - Prob. 27WDLCh. 10.7 - Prob. 31LOCh. 10.7 - How can muscle fatigue result from changes in each...Ch. 10.8 - LEARNING OBJECTIVE
32. Compare and contrast the...Ch. 10.8 - Prob. 29WDLCh. 10.8 - Prob. 33LOCh. 10.8 - Prob. 30WDLCh. 10.9 - Prob. 34LOCh. 10.9 - What are three anatomic or physiologic differences...Ch. 10.10 - Prob. 35LOCh. 10.10 - Prob. 32WDLCh. 10.10 - LEARNING OBJECTIVE
36. Compare the microscopic...Ch. 10.10 - Prob. 33WDLCh. 10.10 - Prob. 34WDLCh. 10.10 - Prob. 37LOCh. 10.10 - What are the steps of smooth muscle contraction?Ch. 10.10 - What unique characteristics of smooth muscle allow...Ch. 10.10 - Prob. 38LOCh. 10.10 - Prob. 37WDLCh. 10.10 - Prob. 38WDLCh. 10.10 - Prob. 39LOCh. 10.10 - LEARNING OBJECTIVES
40. Compare the location and...Ch. 10.10 - Prob. 39WDLCh. 10 - Prob. 1DYBCh. 10 - The physiologic event that takes place at the...Ch. 10 - In a skeletal muscle fiber, Ca2+ is released from...Ch. 10 - The bundle of dense regular connective tissue that...Ch. 10 - In excitation-contraction coupling, the transverse...Ch. 10 - During muscle contraction, the I band a. hides the...Ch. 10 - During a concentric contraction of a muscle fiber,...Ch. 10 - What event causes a troponin-tropomyosin complex...Ch. 10 - In sustained, moderate exercise, skeletal muscle...Ch. 10 - Skeletal muscle and cardiac muscle are similar in...Ch. 10 - Explain the structural relationship between a...Ch. 10 - Prob. 12DYBCh. 10 - Prob. 13DYBCh. 10 - Put the following skeletal muscle contraction...Ch. 10 - Explain the various means of providing ATP for...Ch. 10 - Explain why athletes who excel at short sprints...Ch. 10 - Explain why skeletal muscle generates the most...Ch. 10 - Prob. 18DYBCh. 10 - Describe the response of smooth muscle to...Ch. 10 - Prob. 20DYBCh. 10 - Prob. 1CALCh. 10 - One of the primary reasons that one individual is...Ch. 10 - Prob. 3CALCh. 10 - Rigor mortis occurs following death because a....Ch. 10 - Prob. 5CALCh. 10 - Prob. 1CSLCh. 10 - Describe the effect of the botulinum toxin, which...Ch. 10 - Smooth muscle is within the urinary bladder wall....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Normal dive (for diving humans) normal breathing dive normal breathing Oz level CO2 level urgent need to breathe Oz blackout zone high CO2 triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. How might the location and slope of the O₂ line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO₂ line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardforaging/diet type teeth tongue stomach intestines cecum Insectivory numerous, spiky, incisors procumbentExample: moleExample: shrew -- simple short mostly lacking Myrmecophagy absent or reduced in numbers, peg-likeExample: tamandua anteater extremely long simple, often roughened short small or lacking Terrestrial carnivory sharp incisors; long, conical canines; often carnassial cheek teeth; may have crushing molarsExample: dog -- simple short small Aquatic carnivory homodont, spiky, numerousExample: common dolphin -- simple or multichambered (cetaceans only) variable small or absent Sanguinivory very sharp upper incisors; reduced cheek teethExample: vampire bat grooved tubular, highly extensible long small or lacking Herbivory (except nectivores) incisors robust or absent; canines reduced or absent; diastema; cheek teeth enlarged with complex occlusal surfacesExample: beaver -- simple (hindgut fermenters) or multichambered (ruminants) long large Filter feeding none…arrow_forward3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 པར『ན་ cm 30 Species B 4/3, 1/1, 2/2, 4/4 cm 10 Species C 0/4, 0/0,3/3, 3/3 020arrow_forward
- 3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 cm 30 Species B 0/4, 0/0, 3/3, 3/3 cm 10 Species C 4/3, 1/1, 2/2, 4/4 E 0 cm 20 AILarrow_forwardNormal dive (for diving humans) normal breathing dive normal breathing Oz level CO₂ level urgent need to breathe Oz blackout zone high CO₂ triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. • How might the location and slope of the O2 line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO2 line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- If a bacterium using aerobic respiration was to degrade one small protein molecule into 8 molecules of pyruvic acid, how many ATP would that cell make? Assume there is no other carbon source. Units cannot be entered in this style of question but the units of your answer should be in molecules of ATP.arrow_forwardIf a bacterium using aerobic respiration was to degrade a 30 mM solution of citric acid, how many ATP would that cell make? Assume no other carbon source is available. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. (pathways will be provided on the exam) Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- When beta-lactamase was isolated from Staphylcoccus aureus and treated with a phosphorylating agent, only the active site, serine was phosphorylated. Additionally, the serine was found to constitute 0.35% (by weight) of this beta-lactamase enzyme. Using this, calculate the molecular weight of this enzyme and estimate the number of amino acids present in the polypeptide.arrow_forwardBased on your results from the Mannitol Salt Agar (MSA) media, which of your bacteria were mannitol fermenters and which were not mannitol fermenters?arrow_forwardhelp tutor pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education

Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON

Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax

Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,

Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company

Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.

Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education
GCSE PE - ANTAGONISTIC MUSCLE ACTION - Anatomy and Physiology (Skeletal and Muscular System - 1.5); Author: igpe_complete;https://www.youtube.com/watch?v=6hm_9jQRoO4;License: Standard Youtube License