Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.14, Problem 1KCP

Define and differentiate polymers, plastics, and elastomers.

Expert Solution & Answer
Check Mark
To determine

Define and differentiate polymers, plastics, and elastomers.

Explanation of Solution

Polymer refers to the chemical terminology for a long chain molecules commonly made up of units of repeating monomer chemical. DNA, synthetic plastics, cellulose and etcetera are all polymers. All polymers are not plastic, like DNA and cellulose.

Plastic are an enormous and multiple groups of artificial materials which are formed through thermo mechanical processes, and are categorized as thermosetting or thermoplastic. Examples of plastic items are “Styrofoam” and “Teflon”.

Elastomers are often rubber type polymers and usually extensible. They are highly elastic plastics, upon undergoing stress, they elongate and withstand huge elastic deformation; and regain their previous shape and dimensions when the stress is removed.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a problem existed at the stocking stations of a mini-load AS/RS (automated storage and retrieval system) of a leading electronics manufacturer (Fig.1). At these stations, operators fill the bin delivered by the crane with material arriving in a tote over a roller conveyor. The conveyor was designed at such a height that it was impossible to reach the hooks comfortably even with the tote extended. Furthermore, cost consideration came into the picture and the conveyor height was not reduced. Instead, a step stool was considered to enable the stocker to reach the moving hooks comfortably. The height of the hooks from the floor is 280.2 cm (AD). The tote length is 54.9 cm. The projection of tote length and arm reach, CB = 66.1 cm. a) What anthropometric design principles would you follow to respectively calculate height, length, and width of the step to make it usable to a large number of people? b) What is the minimum height (EF) of the step with no shoe allowance? c) What is the minimum…
Qu. 5 Composite materials are becoming more widely used in aircraft industry due to their high strength, low weight and excellent corrosion resistant properties. As an engineer who is given task to design the I beam section of an aircraft (see Figure 7) please, answer the following questions given the material properties in Table 3. Determine the Moduli of Elasticity of Carbon/Epoxy, Aramid/Epoxy, and Boron /Epoxy composites in the longitudinal direction, given that the composites consist of 25 vol% epoxy and 75 vol% fiber. What are the specific moduli of each of these composites? What are the specific strengths (i.e. specific UTS) of each of these composites? What is the final cost of each of these composites?please show all work step by step problems make sure to see formula material science
Mueh Battery operated train Coll 160,000kg 0.0005 0.15 5m² 1.2kg/m³ CD Af Pair 19 пре neng 0.98 0.9 0.88 Tesla Prated Tesla Trated "wheel ng Joxle 270 kW 440NM 0,45m 20 8.5kg m2 the middle Consider a drive cycle of a 500km trip with 3 stops in Other than the acceleration and deceleration associated with the three stops, the tran maintains constat cruise speed velocity of 324 km/hr. The tran will fast charge at each stop for 15 min at a rate Peharge = 350 kW ΟΙ 15MIN Stop w charging (350kW) (ผม τ (AN GMIJ t 6M 1) HOW MUCH DISTANCE dace is covered DURING THE ACCELERATION TO 324 km/hr? 2) DETERMINE HOW LONG (IN seconds) the tran will BE TRAVELING AT FULL SPEED 2 ? 3) CALCULATE THE NET ENERGY GAW PER STOP ete

Chapter 10 Solutions

Foundations of Materials Science and Engineering

Ch. 10.14 - (a) Why must one consider the average degree of...Ch. 10.14 - Prob. 12KCPCh. 10.14 - Write structural formulas for the mers of the...Ch. 10.14 - Prob. 14KCPCh. 10.14 - Prob. 15KCPCh. 10.14 - Prob. 16KCPCh. 10.14 - Define stepwise polymerization of linear polymers....Ch. 10.14 - What are three basic raw materials used to produce...Ch. 10.14 - Describe and illustrate the following...Ch. 10.14 - Prob. 20KCPCh. 10.14 - Prob. 21KCPCh. 10.14 - Prob. 22KCPCh. 10.14 - Prob. 23KCPCh. 10.14 - Prob. 24KCPCh. 10.14 - Prob. 25KCPCh. 10.14 - Prob. 26KCPCh. 10.14 - Prob. 27KCPCh. 10.14 - Prob. 28KCPCh. 10.14 - Prob. 29KCPCh. 10.14 - (a) Describe the compression-molding process for...Ch. 10.14 - (a) Describe the transfer-molding process for...Ch. 10.14 - Prob. 32KCPCh. 10.14 - Define an engineering thermoplastic. Why is this...Ch. 10.14 - What is the structural formula for the amide...Ch. 10.14 - (a) In the designation nylon 6,6, what does the...Ch. 10.14 - Prob. 36KCPCh. 10.14 - Prob. 37KCPCh. 10.14 - Prob. 38KCPCh. 10.14 - Prob. 39KCPCh. 10.14 - Prob. 40KCPCh. 10.14 - Prob. 41KCPCh. 10.14 - Prob. 42KCPCh. 10.14 - Prob. 43KCPCh. 10.14 - Prob. 44KCPCh. 10.14 - (a) What are the major processing methods used for...Ch. 10.14 - Prob. 46KCPCh. 10.14 - Prob. 47KCPCh. 10.14 - Prob. 48KCPCh. 10.14 - What is natural rubber mainly made of? What other...Ch. 10.14 - Prob. 50KCPCh. 10.14 - Prob. 51KCPCh. 10.14 - Prob. 52KCPCh. 10.14 - Prob. 53KCPCh. 10.14 - What is the vulcanization process for natural...Ch. 10.14 - Prob. 55KCPCh. 10.14 - Prob. 56KCPCh. 10.14 - What are the silicones? What is the general...Ch. 10.14 - Prob. 58KCPCh. 10.14 - Prob. 59KCPCh. 10.14 - Prob. 60KCPCh. 10.14 - Prob. 61KCPCh. 10.14 - Define the creep modulus of a plastic material.Ch. 10.14 - What is a craze in a glassy thermoplastic?Ch. 10.14 - Describe the structure of a craze in a...Ch. 10.14 - Prob. 65KCPCh. 10.14 - Prob. 66AAPCh. 10.14 - Prob. 67AAPCh. 10.14 - Prob. 68AAPCh. 10.14 - An injection-molding polycarbonate material has an...Ch. 10.14 - Prob. 70AAPCh. 10.14 - Prob. 71AAPCh. 10.14 - Prob. 72AAPCh. 10.14 - Prob. 73AAPCh. 10.14 - How much sulfur must be added to 70 g of butadiene...Ch. 10.14 - If 5 g of sulfur is added to 90 g of butadiene...Ch. 10.14 - Prob. 76AAPCh. 10.14 - Prob. 77AAPCh. 10.14 - Prob. 78AAPCh. 10.14 - Prob. 79AAPCh. 10.14 - Prob. 80AAPCh. 10.14 - Prob. 81AAPCh. 10.14 - Prob. 82AAPCh. 10.14 - Prob. 83AAPCh. 10.14 - A polymeric material has a relaxation time of 60...Ch. 10.14 - Prob. 85AAPCh. 10.14 - Prob. 86AAPCh. 10.14 - Prob. 87AAPCh. 10.14 - Prob. 88AAPCh. 10.14 - Prob. 89AAPCh. 10.14 - Prob. 90AAPCh. 10.14 - Prob. 91AAPCh. 10.14 - Prob. 92AAPCh. 10.14 - Prob. 93AAPCh. 10.14 - (a) What causes a polyethylene molecular chain to...Ch. 10.14 - Prob. 95AAPCh. 10.14 - Prob. 96AAPCh. 10.14 - Prob. 97AAPCh. 10.14 - Prob. 98AAPCh. 10.14 - Write the reaction for the stepwise polymerization...Ch. 10.14 - Prob. 100AAPCh. 10.14 - Prob. 101AAPCh. 10.14 - How does chain branching affect the following...Ch. 10.14 - (a) Write the general reaction for the...Ch. 10.14 - Prob. 104AAPCh. 10.14 - Prob. 105AAPCh. 10.14 - Prob. 106AAPCh. 10.14 - Prob. 107AAPCh. 10.14 - Prob. 108AAPCh. 10.14 - Prob. 109AAPCh. 10.14 - Prob. 110AAPCh. 10.14 - Prob. 111AAPCh. 10.14 - Prob. 112AAPCh. 10.14 - Prob. 113AAPCh. 10.14 - Prob. 114AAPCh. 10.14 - Prob. 115AAPCh. 10.14 - Prob. 116AAPCh. 10.14 - Prob. 117AAPCh. 10.14 - Prob. 118AAPCh. 10.14 - Prob. 119AAPCh. 10.14 - Prob. 120AAPCh. 10.14 - What are two types of reaction sites that are...Ch. 10.14 - Prob. 122AAPCh. 10.14 - Prob. 123AAPCh. 10.14 - Prob. 124AAPCh. 10.14 - Prob. 125AAPCh. 10.14 - Prob. 126AAPCh. 10.14 - How does cross-linking with sulfur affect the...Ch. 10.14 - Prob. 128AAPCh. 10.14 - Can SBR be vulcanized? Explain.Ch. 10.14 - Prob. 130AAPCh. 10.14 - Write the repeating chemical structural unit for...Ch. 10.14 - Prob. 132AAPCh. 10.14 - Prob. 133AAPCh. 10.14 - Prob. 134AAPCh. 10.14 - Prob. 135AAPCh. 10.14 - Prob. 136AAPCh. 10.14 - Prob. 137AAPCh. 10.14 - Explain how highly polar atoms bonded to the main...Ch. 10.14 - Prob. 139AAPCh. 10.14 - Prob. 140AAPCh. 10.14 - Prob. 141AAPCh. 10.14 - Prob. 142AAPCh. 10.14 - Prob. 143AAPCh. 10.14 - Prob. 144AAPCh. 10.14 - Why do cured thermoset plastics not become viscous...Ch. 10.14 - Prob. 146AAPCh. 10.14 - Prob. 147AAPCh. 10.14 - Prob. 148AAPCh. 10.14 - Prob. 149AAPCh. 10.14 - Prob. 150AAPCh. 10.14 - Prob. 151AAPCh. 10.14 - Prob. 152AAPCh. 10.14 - Prob. 153AAPCh. 10.14 - Prob. 154AAPCh. 10.14 - Prob. 155AAPCh. 10.14 - Prob. 156AAPCh. 10.14 - Prob. 157AAPCh. 10.14 - Prob. 158AAPCh. 10.14 - Prob. 159AAPCh. 10.14 - Prob. 160AAPCh. 10.14 - Prob. 161AAPCh. 10.14 - Prob. 162AAPCh. 10.14 - Prob. 163AAPCh. 10.14 - Prob. 164AAPCh. 10.14 - Prob. 165AAPCh. 10.14 - Prob. 166AAPCh. 10.14 - Prob. 167AAPCh. 10.14 - Prob. 168AAPCh. 10.14 - Prob. 169AAPCh. 10.14 - Prob. 170AAPCh. 10.14 - Prob. 171AAPCh. 10.14 - Prob. 172AAPCh. 10.14 - Prob. 173AAPCh. 10.14 - Prob. 174AAPCh. 10.14 - Prob. 175AAPCh. 10.14 - Prob. 176AAPCh. 10.14 - Prob. 178AAPCh. 10.14 - Prob. 179AAPCh. 10.14 - What are some of the advantages of epoxy thermoset...Ch. 10.14 - How are most unsaturated polyesters reinforced?Ch. 10.14 - What are some applications for reinforced...Ch. 10.14 - Prob. 183AAPCh. 10.14 - Prob. 187SEPCh. 10.14 - Prob. 188SEPCh. 10.14 - Prob. 189SEPCh. 10.14 - Prob. 190SEPCh. 10.14 - Prob. 191SEPCh. 10.14 - Prob. 192SEPCh. 10.14 - Prob. 193SEPCh. 10.14 - (a) In selecting the materials for an infant milk...Ch. 10.14 - Prob. 195SEPCh. 10.14 - Prob. 196SEPCh. 10.14 - (a) In selecting the materials for compact discs,...Ch. 10.14 - Prob. 198SEPCh. 10.14 - Prob. 199SEPCh. 10.14 - Prob. 200SEPCh. 10.14 - (a) In selecting the materials for a bungee cord,...Ch. 10.14 - Prob. 202SEPCh. 10.14 - Prob. 203SEPCh. 10.14 - In orthopedic applications related to knee and hip...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Polymer Basics; Author: Tonya Coffey;https://www.youtube.com/watch?v=c5gFHpWvDXk;License: Standard youtube license