
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.14, Problem 147AAP
(a)
To determine
What are the fluoroplastics.
(b)
To determine
What are the repeating chemical structural units for polytetrafluoroethylene and polychlorotrifluoroethylene.
(c)
To determine
What are some of the important properties and applications of polytetrafluoroethylene.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The wall of a furnace has a thickness of 5 cm and thermal conductivity
of 0.7 W/m-°C. The inside surface is heated by convection with a hot
gas at 402°C and a heat transfer coefficient of 37 W/m²-°C. The
outside surface has an emissivity of 0.8 and is exposed to air at 27°C
with a heat transfer coefficient of 20 W/m²-ºC. Assume that the
furnace is inside a large room with walls, floor and ceiling at 27°C.
Show the thermal circuit and determine the heat flux through the
furnace wall.
h₁
T₁
k
-L
T.
sur
ho
E
Turbomachienery .
GIven:
vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3
Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram
Use this code for plot
% plots Velocity Tri. in Ch4
function plotveltri(al1,al2,al3,b2,b3)
S1L = [0 1];
V1x = [0 0];
V1s = [0 1*tand(al3)];
S2L = [2 3];
V2x = [0 0];
V2s = [0 1*tand(al2)];
W2s = [0 1*tand(b2)];
U2x = [3 3];
U2y = [1*tand(b2) 1*tand(al2)];
S3L = [4 5];
V3x = [0 0];
V3r = [0 1*tand(al3)];
W3r = [0 1*tand(b3)];
U3x = [5 5];
U3y = [1*tand(b3) 1*tand(al3)];
plot(S1L,V1x,'k',S1L,V1s,'r',...
S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...
S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',......
'LineWidth',2,'MarkerSize',10),...
axis([-1 6 -4 4]), ...
title('Velocity Triangle'), ...
xlabel('x'),ylabel('y'), grid
To save fuel during the heating season it is suggested that glass windows
be covered at night with a 1.2 cm layer of polystyrene. Estimate the
percent savings in energy and discuss the feasibility of this idea. Show
the thermal circuit with and without the insulation panel. Consider a typical
case of 0.2 cm thick window glass with inside and outside heat transfer
coefficients of 6 and 32 W/m²-ºC.
Lg←←Lp
h
T₁
T。
g
kp
insulation panel
Chapter 10 Solutions
Foundations of Materials Science and Engineering
Ch. 10.14 - Define and differentiate polymers, plastics, and...Ch. 10.14 - (a) Describe the atomic structural arrangement of...Ch. 10.14 - What is a pendant atom or group of atoms?Ch. 10.14 - (a)What type of bonding exists within the...Ch. 10.14 - Prob. 5KCPCh. 10.14 - Prob. 6KCPCh. 10.14 - Prob. 7KCPCh. 10.14 - (a) What is the repeating chemical unit of a...Ch. 10.14 - What are the three major reactions that occur...Ch. 10.14 - Prob. 10KCP
Ch. 10.14 - (a) Why must one consider the average degree of...Ch. 10.14 - Prob. 12KCPCh. 10.14 - Write structural formulas for the mers of the...Ch. 10.14 - Prob. 14KCPCh. 10.14 - Prob. 15KCPCh. 10.14 - Prob. 16KCPCh. 10.14 - Define stepwise polymerization of linear polymers....Ch. 10.14 - What are three basic raw materials used to produce...Ch. 10.14 - Describe and illustrate the following...Ch. 10.14 - Prob. 20KCPCh. 10.14 - Prob. 21KCPCh. 10.14 - Prob. 22KCPCh. 10.14 - Prob. 23KCPCh. 10.14 - Prob. 24KCPCh. 10.14 - Prob. 25KCPCh. 10.14 - Prob. 26KCPCh. 10.14 - Prob. 27KCPCh. 10.14 - Prob. 28KCPCh. 10.14 - Prob. 29KCPCh. 10.14 - (a) Describe the compression-molding process for...Ch. 10.14 - (a) Describe the transfer-molding process for...Ch. 10.14 - Prob. 32KCPCh. 10.14 - Define an engineering thermoplastic. Why is this...Ch. 10.14 - What is the structural formula for the amide...Ch. 10.14 - (a) In the designation nylon 6,6, what does the...Ch. 10.14 - Prob. 36KCPCh. 10.14 - Prob. 37KCPCh. 10.14 - Prob. 38KCPCh. 10.14 - Prob. 39KCPCh. 10.14 - Prob. 40KCPCh. 10.14 - Prob. 41KCPCh. 10.14 - Prob. 42KCPCh. 10.14 - Prob. 43KCPCh. 10.14 - Prob. 44KCPCh. 10.14 - (a) What are the major processing methods used for...Ch. 10.14 - Prob. 46KCPCh. 10.14 - Prob. 47KCPCh. 10.14 - Prob. 48KCPCh. 10.14 - What is natural rubber mainly made of? What other...Ch. 10.14 - Prob. 50KCPCh. 10.14 - Prob. 51KCPCh. 10.14 - Prob. 52KCPCh. 10.14 - Prob. 53KCPCh. 10.14 - What is the vulcanization process for natural...Ch. 10.14 - Prob. 55KCPCh. 10.14 - Prob. 56KCPCh. 10.14 - What are the silicones? What is the general...Ch. 10.14 - Prob. 58KCPCh. 10.14 - Prob. 59KCPCh. 10.14 - Prob. 60KCPCh. 10.14 - Prob. 61KCPCh. 10.14 - Define the creep modulus of a plastic material.Ch. 10.14 - What is a craze in a glassy thermoplastic?Ch. 10.14 - Describe the structure of a craze in a...Ch. 10.14 - Prob. 65KCPCh. 10.14 - Prob. 66AAPCh. 10.14 - Prob. 67AAPCh. 10.14 - Prob. 68AAPCh. 10.14 - An injection-molding polycarbonate material has an...Ch. 10.14 - Prob. 70AAPCh. 10.14 - Prob. 71AAPCh. 10.14 - Prob. 72AAPCh. 10.14 - Prob. 73AAPCh. 10.14 - How much sulfur must be added to 70 g of butadiene...Ch. 10.14 - If 5 g of sulfur is added to 90 g of butadiene...Ch. 10.14 - Prob. 76AAPCh. 10.14 - Prob. 77AAPCh. 10.14 - Prob. 78AAPCh. 10.14 - Prob. 79AAPCh. 10.14 - Prob. 80AAPCh. 10.14 - Prob. 81AAPCh. 10.14 - Prob. 82AAPCh. 10.14 - Prob. 83AAPCh. 10.14 - A polymeric material has a relaxation time of 60...Ch. 10.14 - Prob. 85AAPCh. 10.14 - Prob. 86AAPCh. 10.14 - Prob. 87AAPCh. 10.14 - Prob. 88AAPCh. 10.14 - Prob. 89AAPCh. 10.14 - Prob. 90AAPCh. 10.14 - Prob. 91AAPCh. 10.14 - Prob. 92AAPCh. 10.14 - Prob. 93AAPCh. 10.14 - (a) What causes a polyethylene molecular chain to...Ch. 10.14 - Prob. 95AAPCh. 10.14 - Prob. 96AAPCh. 10.14 - Prob. 97AAPCh. 10.14 - Prob. 98AAPCh. 10.14 - Write the reaction for the stepwise polymerization...Ch. 10.14 - Prob. 100AAPCh. 10.14 - Prob. 101AAPCh. 10.14 - How does chain branching affect the following...Ch. 10.14 - (a) Write the general reaction for the...Ch. 10.14 - Prob. 104AAPCh. 10.14 - Prob. 105AAPCh. 10.14 - Prob. 106AAPCh. 10.14 - Prob. 107AAPCh. 10.14 - Prob. 108AAPCh. 10.14 - Prob. 109AAPCh. 10.14 - Prob. 110AAPCh. 10.14 - Prob. 111AAPCh. 10.14 - Prob. 112AAPCh. 10.14 - Prob. 113AAPCh. 10.14 - Prob. 114AAPCh. 10.14 - Prob. 115AAPCh. 10.14 - Prob. 116AAPCh. 10.14 - Prob. 117AAPCh. 10.14 - Prob. 118AAPCh. 10.14 - Prob. 119AAPCh. 10.14 - Prob. 120AAPCh. 10.14 - What are two types of reaction sites that are...Ch. 10.14 - Prob. 122AAPCh. 10.14 - Prob. 123AAPCh. 10.14 - Prob. 124AAPCh. 10.14 - Prob. 125AAPCh. 10.14 - Prob. 126AAPCh. 10.14 - How does cross-linking with sulfur affect the...Ch. 10.14 - Prob. 128AAPCh. 10.14 - Can SBR be vulcanized? Explain.Ch. 10.14 - Prob. 130AAPCh. 10.14 - Write the repeating chemical structural unit for...Ch. 10.14 - Prob. 132AAPCh. 10.14 - Prob. 133AAPCh. 10.14 - Prob. 134AAPCh. 10.14 - Prob. 135AAPCh. 10.14 - Prob. 136AAPCh. 10.14 - Prob. 137AAPCh. 10.14 - Explain how highly polar atoms bonded to the main...Ch. 10.14 - Prob. 139AAPCh. 10.14 - Prob. 140AAPCh. 10.14 - Prob. 141AAPCh. 10.14 - Prob. 142AAPCh. 10.14 - Prob. 143AAPCh. 10.14 - Prob. 144AAPCh. 10.14 - Why do cured thermoset plastics not become viscous...Ch. 10.14 - Prob. 146AAPCh. 10.14 - Prob. 147AAPCh. 10.14 - Prob. 148AAPCh. 10.14 - Prob. 149AAPCh. 10.14 - Prob. 150AAPCh. 10.14 - Prob. 151AAPCh. 10.14 - Prob. 152AAPCh. 10.14 - Prob. 153AAPCh. 10.14 - Prob. 154AAPCh. 10.14 - Prob. 155AAPCh. 10.14 - Prob. 156AAPCh. 10.14 - Prob. 157AAPCh. 10.14 - Prob. 158AAPCh. 10.14 - Prob. 159AAPCh. 10.14 - Prob. 160AAPCh. 10.14 - Prob. 161AAPCh. 10.14 - Prob. 162AAPCh. 10.14 - Prob. 163AAPCh. 10.14 - Prob. 164AAPCh. 10.14 - Prob. 165AAPCh. 10.14 - Prob. 166AAPCh. 10.14 - Prob. 167AAPCh. 10.14 - Prob. 168AAPCh. 10.14 - Prob. 169AAPCh. 10.14 - Prob. 170AAPCh. 10.14 - Prob. 171AAPCh. 10.14 - Prob. 172AAPCh. 10.14 - Prob. 173AAPCh. 10.14 - Prob. 174AAPCh. 10.14 - Prob. 175AAPCh. 10.14 - Prob. 176AAPCh. 10.14 - Prob. 178AAPCh. 10.14 - Prob. 179AAPCh. 10.14 - What are some of the advantages of epoxy thermoset...Ch. 10.14 - How are most unsaturated polyesters reinforced?Ch. 10.14 - What are some applications for reinforced...Ch. 10.14 - Prob. 183AAPCh. 10.14 - Prob. 187SEPCh. 10.14 - Prob. 188SEPCh. 10.14 - Prob. 189SEPCh. 10.14 - Prob. 190SEPCh. 10.14 - Prob. 191SEPCh. 10.14 - Prob. 192SEPCh. 10.14 - Prob. 193SEPCh. 10.14 - (a) In selecting the materials for an infant milk...Ch. 10.14 - Prob. 195SEPCh. 10.14 - Prob. 196SEPCh. 10.14 - (a) In selecting the materials for compact discs,...Ch. 10.14 - Prob. 198SEPCh. 10.14 - Prob. 199SEPCh. 10.14 - Prob. 200SEPCh. 10.14 - (a) In selecting the materials for a bungee cord,...Ch. 10.14 - Prob. 202SEPCh. 10.14 - Prob. 203SEPCh. 10.14 - In orthopedic applications related to knee and hip...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A plate of thickness L and thermal conductivity k is exposed to a fluid at temperature T1 with a heat transfer coefficient h, on one side and T2 and h₂ on the other side. Determine the one-dimensional temperature distribution in the plate. Assume steady state and constant conductivity. L h h T%2 k Tx1 0xarrow_forwardDetermine the heater capacity needed to maintain the inside temperature of a laboratory chamber at 38°C when placed in a room at 21°C. The chamber is cubical with each side measuring 35 cm. The walls are 1.2 cm thick and are made of polystyrene. The inside and outside heat transfer coefficients are 5 and 22 W/m²-°C.arrow_forward(a) Refer to the above figure .What kind of controller is it ? (b) simplify the block diagramto derive the closed loop transfer function of the system. (C) What are the assumptions thatare needed to make to findthe controller gain ? What arethe value of Kp , Ti and Td ?arrow_forward
- Lonsider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and esch stage of turbine at 1400 K. The regetierator has an effectiveness of 100%, Determine (a) The enthalpy at stage#2 in KJ/kg (b) The enthalpy at stage in KJ/kg" (c) The cathalpy at stager in KJ/kg* (d) The enthalpy at stage#10 in KJ/kg (c) The mass flow rate of air needed to develop a net power output of 50 MW *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculationarrow_forwardConsider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and each stage of turbine at 1400 K. The regenerator has an effectiveness of 100%. Determine (a) The enthalpy at stage#2 in KJ/kg⭑ (b) The enthalpy at stage#6 in KJ/kg* (c) The enthalpy at stage#9 in KJ/kg (d) The enthalpy at stage#10 in KJ/kg (e)The mass flow rate of air needed to develop a net power output of 50 MW* *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculation. Compressor stage 1 Regenerator www HX ww 9 Combustor Reheat Intercooler ww Compressor stage 2 Turbine 1 combustor Turbine 2arrow_forwardDesign a proportional derivitivecontroller for a plant orsystemthat satisfies the following specifications : 1. is steady-state error is less than 2 % for a ramp input. 2.) Damping ratio (zeta) is greater than 0.7have determined the 3. Once youvalue of kp and kd, then plotthe response of the compensated(with controller) and uncompensated( without the controller, only the plantsystem using MATLAB.arrow_forward
- Example 2 The particle has a mass of 0.5 kg and is confined to move along the smooth horizontal slot due to the rotation of the arm OA. Determine the force of the rod on the particle and the normal force of the slot on the particle when 0 = 30°. The rod is rotating with a constant angular velocity 2 rad/s. Assume the particle contacts only one side of the slot at any instant. B =2 rad/s 0.5 m 0.5(9.81)N r F 30° Narrow_forwardA gas turbine cycle has two stages of compression, with an intercooler between the stages. Air enters the first stage at 100 kPa, 300 K. The pressure efficiency of 82%. Air exits the intercooler at 330 K. Calculate the temperature at the exit of each compressor stage and the total specific work required.arrow_forwardFor problem 13, your answer should be the same as problem 12. Calculate the flow velocity and the heat transfer/area of the outer surfaces for both duct geometries to see the performance difference of the two designs.arrow_forward
- One end of a thin uniform rod of mass m and length 31 rests against a smooth vertical wall. The other end of the rod is attached by a string of length 1 to a fixed point O which is located a distance 21 from the wall. A horizontal force of magnitude F₁ is applied to the lower end of the rod as shown. Assuming the rod and the string remain in the same vertical plane perpendicular to the wall, find the angle 0 between the rod and the wall at the position of static equilibrium. Notes: This quiz is going to walk you through a sequence of steps to do this. It won't give you the answers, but it will hopefully get you to see how to approach problems like this so that you have a working reference/template in the future. This is actually a modified version of a problem from the textbook (6.3). Note that in that problem, is not actually given. It has been introduced for convenience as we move through solving the problem, and should not show up in the final answer. DO NOT DO PROBLEM 6.3. It is…arrow_forwardvarrow_forward13.64 The shaft shown in Sketch h transfers power between the two pulleys. The tension on the slack side (right pul- ley) is 30% of that on the tight side. The shaft rotates at 900 rpm and is supported uniformly by a radial ball bearing at points 0 and B. Select a pair of radial ball bear- ings with 99% reliability and 40,000 hr of life. Assume Eq. (13.83) can be used to account for lubricant clean- liness. All length dimensions are in millimeters. Ans. Cmin = 42,400 N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Polymer Basics; Author: Tonya Coffey;https://www.youtube.com/watch?v=c5gFHpWvDXk;License: Standard youtube license