If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. By revolving the semicircle x = r cos t , y = r sin t 0 ≤ t ≤ π about the x -axis, show that the surface area of a sphere of radius r is 4 π r 2 .
If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. By revolving the semicircle x = r cos t , y = r sin t 0 ≤ t ≤ π about the x -axis, show that the surface area of a sphere of radius r is 4 π r 2 .
If
f
′
t
and
g
′
t
are continuous functions, and if no segment of the curve
x
=
f
t
,
y
=
g
t
a
≤
t
≤
b
is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x-axis is
S
=
∫
a
b
2
π
y
d
x
d
t
2
+
d
y
d
t
2
d
t
and the area of the surface generated by revolving the curve about the y-axis is
S
=
∫
a
b
2
π
x
d
x
d
t
2
+
d
y
d
t
2
d
t
[The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises.
By revolving the semicircle
x
=
r
cos
t
,
y
=
r
sin
t
0
≤
t
≤
π
about the x-axis, show that the surface area of a sphere of radius r is
4
π
r
2
.
EXAMPLE 3
Find
S
X
√√2-2x2
dx.
SOLUTION Let u = 2 - 2x². Then du =
Χ
dx =
2- 2x²
=
信
du
dx, so x dx =
du and
u-1/2 du
(2√u) + C
+ C (in terms of x).
Let g(z) =
z-i
z+i'
(a) Evaluate g(i) and g(1).
(b) Evaluate the limits
lim g(z), and lim g(z).
2-12
(c) Find the image of the real axis under g.
(d) Find the image of the upper half plane {z: Iz > 0} under the function g.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY