If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. Find the area of the surface generated by revolving the curve x = cos 2 t , y = sin 2 t 0 ≤ t ≤ π / 2 about the y -axis.
If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. Find the area of the surface generated by revolving the curve x = cos 2 t , y = sin 2 t 0 ≤ t ≤ π / 2 about the y -axis.
If
f
′
t
and
g
′
t
are continuous functions, and if no segment of the curve
x
=
f
t
,
y
=
g
t
a
≤
t
≤
b
is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x-axis is
S
=
∫
a
b
2
π
y
d
x
d
t
2
+
d
y
d
t
2
d
t
and the area of the surface generated by revolving the curve about the y-axis is
S
=
∫
a
b
2
π
x
d
x
d
t
2
+
d
y
d
t
2
d
t
[The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises.
Find the area of the surface generated by revolving the curve
x
=
cos
2
t
,
y
=
sin
2
t
0
≤
t
≤
π
/
2
about the y-axis.
Evaluate the triple integral
3'
23
HIG
2
+3
f(x, y, z)dxdydz where f(x, y, z) = x +
2x-y
ม
u =
v =
and w =
2
2
3
Triple Integral
Region R
-2
x
N
2
y
3
Find the volume of the solid bounded below by the circular cone z = 2.5√√√x² + y² and above by the
sphere x² + y²+z² = 6.5z.
Electric charge is distributed over the triangular region D shown below so that the charge density at (x, y)
is σ(x, y) = 4xy, measured in coulumbs per square meter (C/m²). Find the total charge on D. Round
your answer to four decimal places.
1
U
5
4
3
2
1
1
2
5
7
coulumbs
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY