<LCPO> VECTOR MECH,STAT+DYNAMICS
<LCPO> VECTOR MECH,STAT+DYNAMICS
12th Edition
ISBN: 9781265566296
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10.1, Problem 10.53P
To determine

Find the force representing the reaction at A using the virtual work method.

Find the couple representing the reaction at A using the virtual work method.

Expert Solution & Answer
Check Mark

Answer to Problem 10.53P

The force representing the reaction at A is 250N()_.

The couple representing the reaction at A is 450Nm(Counterclockwise)_.

Explanation of Solution

Find the force at A;

Show the free-body diagram of the continuous beam as in Figure 1.

<LCPO> VECTOR MECH,STAT+DYNAMICS, Chapter 10.1, Problem 10.53P , additional homework tip  1

Consider the member AB is horizontal.

The vertical displacement at point A is δyA.

Find the vertical displacement (δyA) at A with respect to vertical displacement (δyB) at B as follows;

δyA=δyB

Find the vertical displacement (δyC) at C with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyC1.5δyC=1.52.4δyB=58δyB

Find the vertical displacement (δyE) at E with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyE1.2δyE=1.22.4δyB=δyB2

Find the vertical displacement (δyF) at F with respect to vertical displacement (δyB) at B as follows;

δyE1.8=δyF1.5δyF=1.51.8δyE=56(δyB2)=512δyB

Use the concept of virtual work;

δU=0;AδyA+800δyC600δyF=0

Substitute δyB for δyA, 58δyB for δyC, and 512δyB for δyF.

AδyB+800(58δyB)600(512δyB)=0A+500250=0A=250N()

Therefore, the force representing the reaction at A is 250N()_.

Find the couple at A;

Show the free-body diagram of the continuous beam as in Figure 2.

<LCPO> VECTOR MECH,STAT+DYNAMICS, Chapter 10.1, Problem 10.53P , additional homework tip  2

Rotate the member AB in the beam through δθ at the point A.

Find the vertical reaction (δyB) at point B as follows;

δθ=δyB1.8δyB=1.8δθ

Find the vertical displacement (δyC) at C with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyC1.5δyC=1.52.4δyB=58(1.8δθ)=1.125δθ

Find the vertical displacement (δyE) at E with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyE1.2δyE=1.22.4δyB=12(1.8δθ)=0.9δθ

Find the vertical displacement (δyF) at F with respect to vertical displacement (δyB) at B as follows;

δyE1.8=δyF1.5δyF=1.51.8δyE=56(0.9δθ)=0.75δθ

Use the concept of virtual work;

δU=0;MAδθ+800δyC600δyF=0

Substitute 1.125δθ for δyC and 0.75δθ for δyF.

MAδθ+800(1.125δθ)600(0.75δθ)=0MA+900450=0MA=450Nm(Anticlockwise)

Therefore, the couple representing the reaction at A is 450Nm(Counterclockwise)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992148&offset=next
CHAPTER 14: Kinetics of a Particle: Conservation of Energy Qu.4 The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. If it is attached to the 3- kg smooth collar and the collar is released from rest at A, determine the speed of the collar when it reaches B. Neglect the size of the collar.please show all work step by step
Qu. 2 The 100-kg crate is subjected to the action of two forces. If it is originally at rest, determine the distance it slides in order to attain a speed of 6 m/s. The coefficient of kinetic friction between the crate and the surface is uk = 0.2. i need to show all work step by step problems

Chapter 10 Solutions

<LCPO> VECTOR MECH,STAT+DYNAMICS

Ch. 10.1 - Solve Prob. 10.10, assuming that the force P...Ch. 10.1 - Prob. 10.12PCh. 10.1 - Prob. 10.13PCh. 10.1 - Prob. 10.14PCh. 10.1 - Prob. 10.15PCh. 10.1 - 10.15 and 10.16 Derive an expression for the...Ch. 10.1 - Prob. 10.17PCh. 10.1 - Prob. 10.18PCh. 10.1 - Prob. 10.19PCh. 10.1 - Prob. 10.20PCh. 10.1 - Prob. 10.21PCh. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - In Prob. 10.9, knowing that a = 42 in., b = 28...Ch. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.27PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Prob. 10.32PCh. 10.1 - Prob. 10.33PCh. 10.1 - Prob. 10.34PCh. 10.1 - Prob. 10.35PCh. 10.1 - Prob. 10.36PCh. 10.1 - Prob. 10.37PCh. 10.1 - Prob. 10.38PCh. 10.1 - Prob. 10.39PCh. 10.1 - Prob. 10.40PCh. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - Prob. 10.43PCh. 10.1 - Prob. 10.44PCh. 10.1 - Prob. 10.45PCh. 10.1 - Prob. 10.46PCh. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Prob. 10.48PCh. 10.1 - Prob. 10.49PCh. 10.1 - Prob. 10.50PCh. 10.1 - Prob. 10.51PCh. 10.1 - Prob. 10.52PCh. 10.1 - Prob. 10.53PCh. 10.1 - Prob. 10.54PCh. 10.1 - Prob. 10.55PCh. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Determine the horizontal movement of joint C if...Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Prob. 10.60PCh. 10.2 - Prob. 10.61PCh. 10.2 - Prob. 10.62PCh. 10.2 - Prob. 10.63PCh. 10.2 - Prob. 10.64PCh. 10.2 - Prob. 10.65PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.38....Ch. 10.2 - Prob. 10.67PCh. 10.2 - Prob. 10.68PCh. 10.2 - Prob. 10.69PCh. 10.2 - Prob. 10.70PCh. 10.2 - Prob. 10.71PCh. 10.2 - Prob. 10.72PCh. 10.2 - Prob. 10.73PCh. 10.2 - Prob. 10.74PCh. 10.2 - A load W of magnitude 144 lb is applied to...Ch. 10.2 - Solve Prob. 10.75, assuming that the spring...Ch. 10.2 - Bar ABC is attached to collars A and B that...Ch. 10.2 - Solve Prob. 10.77, assuming that the spring...Ch. 10.2 - Prob. 10.79PCh. 10.2 - Prob. 10.80PCh. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - Prob. 10.83PCh. 10.2 - Prob. 10.84PCh. 10.2 - Prob. 10.85PCh. 10.2 - Prob. 10.86PCh. 10.2 - Prob. 10.87PCh. 10.2 - Prob. 10.88PCh. 10.2 - Prob. 10.89PCh. 10.2 - Prob. 10.90PCh. 10.2 - Prob. 10.91PCh. 10.2 - Prob. 10.92PCh. 10.2 - Prob. 10.93PCh. 10.2 - Prob. 10.94PCh. 10.2 - Prob. 10.95PCh. 10.2 - Prob. 10.96PCh. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Solve Prob. 10.97 knowing that l = 30 in. and k =...Ch. 10.2 - Bars AB and CD, each of length l and of negligible...Ch. 10.2 - Solve Prob. 10.99, assuming that the vertical...Ch. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Prob. 10.103RPCh. 10 - Prob. 10.104RPCh. 10 - Prob. 10.105RPCh. 10 - Prob. 10.106RPCh. 10 - Prob. 10.107RPCh. 10 - Prob. 10.108RPCh. 10 - Prob. 10.109RPCh. 10 - Prob. 10.110RPCh. 10 - Prob. 10.111RPCh. 10 - Prob. 10.112RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license