Concept explainers
(a)
Find the couple M required to maintain the equilibrium.
(a)

Answer to Problem 10.21P
The magnitude of the couple M is
Explanation of Solution
Given information:
The magnitude of the force P is 4 kN.
The distance between the point A and B is 50 mm.
The distance between the point B and C is 200 mm.
The value of the angle
Calculation:
Show the free-body diagram of the engine system as in Figure 1.
Consider the geometry of the Figure 1.
Use the Law of sines;
Differentiate the equation;
Find the horizontal displacement
Differentiate the equation;
Substitute
Use the principle of virtual work;
Substitute
Substitute 50 mm for AB, 200 mm for BC, and
Substitute 4 kN for P, 50 mm for AB, 200 mm for BC,
Therefore, the magnitude of the couple M is
(b)
Find the couple M required to maintain the equilibrium.
(b)

Answer to Problem 10.21P
The magnitude of the couple M is
Explanation of Solution
Given information:
The magnitude of the force P is 4 kN.
The distance between the point A and B is 50 mm.
The distance between the point B and C is 200 mm.
The value of the angle
Calculation:
Refer part (a) for calculation;
Substitute 50 mm for AB, 200 mm for BC, and
Substitute 4 kN for P, 50 mm for AB, 200 mm for BC,
Therefore, the magnitude of the couple M is
Want to see more full solutions like this?
Chapter 10 Solutions
<LCPO> VECTOR MECH,STAT+DYNAMICS
- Q5:(? Design the duct system of the figure below by using the balanced pressure method. The velocity in the duct attached to the AHU must not exceed 5m/s. The pressure loss for each diffuser is equal to 10Pa. 100CFM 100CFM 100CFM ☑ ☑ 40m AHU -16m- 8m- -12m- 57m 250CFM 40m -14m- 26m 36m ☑ 250CFMarrow_forwardA mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forward
- My ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forwardMy ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forward
- My ID# 016948724arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
