
A couple M with a magnitude of 100 N·m is applied as shown to the crank of the engine system. Knowing that AB = 50 mm and BC = 200 mm, determine the force P required to maintain the equilibrium of the system when (a) θ = 60°, (b) θ = 120°.
Fig. P10.22
(a)

Find the magnitude of the force P required to maintain the equilibrium.
Answer to Problem 10.22P
The magnitude of the force P required is
Explanation of Solution
Given information:
The magnitude of the couple M is
The distance between the point A and B is 50 mm.
The distance between the point B and C is 200 mm.
The value of the angle
Calculation:
Show the free-body diagram of the engine system as in Figure 1.
Consider the geometry of the Figure 1.
Use the Law of sines;
Differentiate the equation;
Find the horizontal displacement
Differentiate the equation;
Substitute
Use the principle of virtual work;
Substitute
Substitute 50 mm for AB, 200 mm for BC, and
Substitute
Therefore, the magnitude of the force P required is
(b)

Find the magnitude of the force P required to maintain the equilibrium.
Answer to Problem 10.22P
The magnitude of the force P required is
Explanation of Solution
Given information:
The magnitude of the couple M is
The distance between the point A and B is 50 mm.
The distance between the point B and C is 200 mm.
The value of the angle
Calculation:
Refer part (a) for calculation;
Substitute 50 mm for AB, 200 mm for BC, and
Substitute
Therefore, the magnitude of the force P required is
Want to see more full solutions like this?
Chapter 10 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
- 3. Determine the flow rate through the pipe line show in the figure in ft³/s, and determine the pressures at A and C, in psi. 5' B C 12° 20' D 6"d 2nd- Water Aarrow_forward5. A flow is field given by V = x²₁³+xy, and determine 3 ·y³j- (a) Whether this is a one, two- or three-dimensional flow (b) Whether it is a possible incompressible flow (c) Determine the acceleration of a fluid particle at the location (X,Y,Z)=(1,2,3) (d) Whether the flow is rotational or irrotational flow?arrow_forwardSolve this problem and show all of the workarrow_forward
- Solve this problem and show all of the workarrow_forwarddraw the pneumatic circuit to operate a double-acting cylinder with: 1. Extension: Any of two manual conditions plus cylinder fully retracted, → Extension has both meter-in and meter-out, 2. Retraction: one manual conditions plus cylinder fully extended, → Retraction is very fast using quick exhaust valve.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you. Expert solution plsarrow_forward
- Correct answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only with fbd. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





