Interpretation:
The enthalpy change for the following reaction should be determined.
Concept Introduction:
Enthalpy of a reaction is a state function thus; change in enthalpy of a reaction does not depend on the path of the reaction.
The change in enthalpy is same if the same reaction takes place in one step or series of steps. This is known as Hess’s law. There are following characteristics of change in enthalpy which are important to calculate the change in enthalpy of a reaction using Hess’s law.
- For a reversed reaction, the sign of enthalpy change of the reaction also reversed.
- If any reactant or product is multiplied by any integer in the
chemical reaction , enthalpy change of that reactant or product is also multiplied by the same integer.
Answer to Problem 89CP
Explanation of Solution
Given Information:
The following reactions are given:
Calculation:
The net reaction is as follows:
To obtain the above reaction,
Reverse the 2nd reaction as follows:
Multiply the above reaction by 2
Adding the above reaction to 1st reaction thus,
Now, reverse the 3rd reaction:
Adding this reverse reaction to above net reaction:
The 4th reaction is multiplied by 9 thus,
Adding this to the above net reaction:
Divide the resultant reaction by 4 to get the desired reaction:
Want to see more full solutions like this?
Chapter 10 Solutions
EBK INTRODUCTORY CHEMISTRY
- Unshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forwardDraw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning