If two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within R ≈ 10 − 14 m of one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse. (a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)
If two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within R ≈ 10 − 14 m of one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse. (a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)
If two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within
R
≈
10
−
14
m
of one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse.
(a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.