A person walks into a room and switches on the ceiling fan. The fan accelerates with constant angular acceleration for 15 s until it reaches its operating angular speed of 1.9 rotations/s—after that its speed remains constant as long as the switch is “on.” The person stays in the room for a short time; then, 5.5 minutes after turning the fan on, she switches it off again and leaves the room. The fan now decelerates with constant angular acceleration, taking 24 minutes to come to rest. What is the total number of revolutions made by the fan, from the time it was turned on until the time it stopped?
A person walks into a room and switches on the ceiling fan. The fan accelerates with constant angular acceleration for 15 s until it reaches its operating angular speed of 1.9 rotations/s—after that its speed remains constant as long as the switch is “on.” The person stays in the room for a short time; then, 5.5 minutes after turning the fan on, she switches it off again and leaves the room. The fan now decelerates with constant angular acceleration, taking 24 minutes to come to rest. What is the total number of revolutions made by the fan, from the time it was turned on until the time it stopped?
A person walks into a room and switches on the ceiling fan. The fan accelerates with constant angular acceleration for 15 s until it reaches its operating angular speed of 1.9 rotations/s—after that its speed remains constant as long as the switch is “on.” The person stays in the room for a short time; then, 5.5 minutes after turning the fan on, she switches it off again and leaves the room. The fan now decelerates with constant angular acceleration, taking 24 minutes to come to rest. What is the total number of revolutions made by the fan, from the time it was turned on until the time it stopped?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
"looks" like a particle.)
...32 GO
In Fig. 22-55, positive
charge q = 7.81 pC is spread uni-
formly along a thin nonconducting
rod of length L = 14.5 cm. What are
the (a) magnitude and (b) direction
(relative to the positive direction
of the x axis) of the electric field
produced at point P, at distance
R = 6.00 cm from the rod along its
perpendicular bisector?
R
y
Р
+ + + + + + + + +-×
L
Figure 22-55 Problem 32.
1) A horizontal wire carrying current I in +x direction on the x-axis from x=0 to x=2
2) A vertical wire carrying current I upward at along the x=2 line from y=0 to y=8
3) A diagonal straight wire started at the origin and it ends at y=8 x=2 carrying a current in SE direction ( diagonally downward); y=4x
In a regional magnetic field that is given in vector notation by
B = ( y i - x j )/(x^2+y^2+25)
As components
Bx = (y+1)/x^2+y^2+25)
By = (1- x )/(x^2+y^2+25)
Find the integral expression for the net force for each branch carrying 5 ampere current.
An electric power station that operates at 30 KV and uses
a 15:1 set step-up ideal transformer is producing 400MW
(Mega-Watt) of power that is to be sent to a big city
with only 2.0% loss. What
which is located 270 km
away
is the resistance of the Two wires that are
being used?
52
Chapter 10 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for Physics (18-Weeks)
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.