
A ballistic pendulum is used to measure the speed of bullets. It comprises a heavy block of wood of mass M suspended by two long cords. A bullet of mass m is fired into the block horizontally. The block, with the bullet embedded in it, swings upward (Fig. P10.70). The center of mass of the combination rises through a vertical distance h before coming to rest momentarily. In a particular experiment, a bullet of mass 40.0 g is fired into a wooden block of mass 10.0 kg. The block–bullet combination is observed to rise to a maximum height of 20.0 cm above the block’s initial height. a. What is the initial speed of the bullet? b. What is the fraction of initial kinetic energy lost after the bullet is embedded in the block?
FIGURE P10.70
(a)

The initial speed of the bullet.
Answer to Problem 70PQ
The initial speed of the bullet is
Explanation of Solution
Write the expression of the conservation of linear momentum before and after collision.
Here,
Rearrange above equation to get
According to conservation of mechanical energy, kinetic energy of the bullet-block system immediately after collision is equal to gravitational potential energy of the bullet-block system at maximum displacement.
Write the mathematical expression for conservation of energy.
Here,
Write the expression for
Write the expression for
Here,
Put equations (III) and (IV) in equation (II) and rearrange it to get
Substitute
Conclusion:
Substitute
Therefore, the initial speed of the bullet is
(b)

The fraction of initial kinetic energy lost after the bullet is embedded in the block.
Answer to Problem 70PQ
The initial kinetic energy of the bullet is lost by
Explanation of Solution
The collision of bullet with block results in loss of some initial kinetic energy so that final kinetic energy after impact might be less than initial kinetic energy.
Initial kinetic energy of the system is equal to kinetic energy of the bullet before collision.
Write the expression for the initial kinetic energy.
Lose of kinetic energy is equal to difference between the final kinetic energy after the impact and initial kinetic energy of the bullet.
Final kinetic energy after the impact is equal to final potential energy of the block-bullet system at maximum displacement position.
Write the expression for the final kinetic energy.
Substitute
Write the expression for the percentage change in kinetic energy.
Conclusion:
Substitute
Substitute
Substitute
Therefore, the initial kinetic energy of the bullet is lost by
Want to see more full solutions like this?
Chapter 10 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





