
Concept explainers
To determine: The possible genotypes of children born if a individual who is heterozygous for a recessive mutation in enzyme 1 and enzyme 2 marries an individual having the same genotype.
Introduction:

Explanation of Solution
It is given that both the individuals are heterozygous for a recessive mutation of enzymes 1 and 2. To find the possible genotypes of their children, genotypes of parents can be assumed as:
R represents normal enzyme 1 and r shows mutated enzyme 1. D shows normal enzyme 2 and d shows mutated enzyme 2.
Both the parents are heterozygous for the recessive mutation in both the enzymes. So the gametes produced by these parents will be RD, Rd, rD, and rd.
Genotype of the children from these gametes can be determined as follows:
RD | Rd | rD | rd | |
RD | RRDD | RRDd | RrDD | RrDd |
Rd | RRDd | RRdd | RrDd | Rrdd |
rD | RrDD | RrDd | rrDD | rrDd |
rd | RrDd | Rrdd | rrDd | rrdd |
GenotypesRRDD, RRDd, RrDD, RrDd, RRDd, RrDd, RrDD, RrDd, and RrDd will not show any mutation in any of the enzymes.
Genotypes rrDD, rrDd, and rrDd will show mutation in enzyme 1 only.
Genotypes RRdd, Rrdd, and Rrdd will show mutation in enzyme 2 only.
Genotype rrdd will show mutation in both the enzymes 1 and 2.
To determine: The activity ofenzyme 1 and enzyme 2 for all the genotypes that are produced in children if an individual who is heterozygous for a recessive mutation in both, enzyme 1 and enzyme 2, marries an individual having the same genotype, assuming that there is 0% activity for mutant alleles and 50% activity in normal alleles.
Introduction: Metabolic pathways are catalyzed using enzymes. These enzymes are synthesized based on information provided by the genes.. Any type of change in these genes can hinder the synthesis of these enzymes or lead to synthesis of faulty enzymes. Heterozygosity is when same copies of alleles are present for a gene and homozygosity is when different copies of alleles are present for a gene.

Explanation of Solution
The possible genotypes of children born from parents who are heterozygous for a recessive mutation in both the enzymes are determined as follows:
R represents normal enzyme 1 and r shows mutated enzyme 1. D shows normal enzyme 2 and d shows mutated enzyme 2.
Both the parents are heterozygous for the recessive mutation in both the enzymes. So the gametes produced by these parents will be RD, Rd, rD, and rd.
Genotype of the children from these gametes can be determined as follows:
RD | Rd | rD | rd | |
RD | RRDD | RRDd | RrDD | RrDd |
Rd | RRDd | RRdd | RrDd | Rrdd |
rD | RrDD | RrDd | rrDD | rrDd |
rd | RrDd | Rrdd | rrDd | rrdd |
Genotypes RRDD, RRDd, RrDD, RrDd, RRDd, RrDd, RrDD, RrDd, and RrDd will not show any mutation in any of the enzymes. Hence, both the enzymes will show 50% activity in these genotypes
Genotypes rrDD, rrDd, and rrDd will show mutation in enzyme 1 only. Hence, in children with these genotypes, enzyme 1 will show 0% activity and enzyme 2 will show 50 % activity.
Genotypes RRdd, Rrdd, and Rrdd will show mutation in enzyme 2 only. Hence, in children with these genotypes, enzyme 1 will show 50% activity and enzyme 2 will show 0% activity.
Genotype rrdd will show mutation in both the enzymes 1 and 2. Hence, in children with these genotypes, both, enzyme 1 and enzyme 2 will show 0% activity.
To determine: Whether compound C will be made or not in each genotype of children born, if an individual who is heterozygous for a recessive mutation in both, enzyme 1 and enzyme 2, marries an individual having the same genotype, and if compound C not produced, the compounds that will be in excess.
Introduction: Metabolic pathways are catalyzed using enzymes. These enzymes are synthesized based on information provided by the genes.. Any type of change in these genes can hinder the synthesis of these enzymes or lead to synthesis of faulty enzymes. Heterozygosity is when same copies of alleles are present for a gene and homozygosity is when different copies of alleles are present for a gene.

Explanation of Solution
Genotype RRDD will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts.
Genotype RRDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts.
Genotype RrDD will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype RrDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype RRDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype RRdd will show mutation in enzyme 2 only. Hence, compound C will not be produced while there will be an excess production of compound B. Compound A will be present in normal amounts.
Genotype RrDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype Rrdd will show mutation in enzyme 2 only. Hence, compound C will not be produced while there will be an excess production of compound B. Compound A will be present in normal amounts.
Genotype RrDD will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype RrDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype rrDD will show mutation in enzyme 1 only. So there will be no production of compound B as mutated enzyme 1 will not be able to act on compound A. Absence of compound B will cause no production of compound C. Here, compound A will be present in excess.
Genotype rrDd will show mutation in enzyme 1 only. So there will be no production of compound B as mutated enzyme 1 will not be able to act on compound A. Absence of compound B will cause no production of compound C. Here, compound A will be present in excess.
Genotype RrDd will not show any mutation in any of the enzymes. So, all the compounds will be present in their adequate amounts
Genotype Rrdd will show mutation in enzyme 2 only. Hence, compound C will not be produced while there will be an excess of compound B. Compound A will be present in normal amounts.
Genotype rrDd will show mutation in enzyme 1 only. So there will be no production of compound B as mutated enzyme 1 will not be able to act on compound A. Absence of compound B will cause no production of compound C. Here, compound A will be present in excess.
Genotype rrdd will show mutation in both, enzyme 1 and enzyme 2. Hence no compound will be metabolized and compound C will not be produced.
Want to see more full solutions like this?
Chapter 10 Solutions
HUMAN HEREDITY (LL)-W/MINDTAP ACCESS
- You implant an FGF10-coated bead into the anterior flank of a chicken embryo, directly below the level of the wing bud. What is the phenotype of the resulting ectopic limb? Briefly describe the expected expression domains of 1) Shh, 2) Tbx4, and 3) Tbx5 in the resulting ectopic limb bud.arrow_forwardDesign a grafting experiment to determine if limb mesoderm determines forelimb / hindlimb identity. Include the experiment, a control, and an interpretation in your answer.arrow_forwardThe Snapdragon is a popular garden flower that comes in a variety of colours, including red, yellow, and orange. The genotypes and associated phenotypes for some of these flowers are as follows: aabb: yellow AABB, AABb, AaBb, and AaBB: red AAbb and Aabb: orange aaBB: yellow aaBb: ? Based on this information, what would the phenotype of a Snapdragon with the genotype aaBb be and why? Question 21 options: orange because A is epistatic to B yellow because A is epistatic to B red because B is epistatic to A orange because B is epistatic to A red because A is epistatic to B yellow because B is epistatic to Aarrow_forward
- A sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardA sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forward
- With reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forward
- During a routine medical check up of a healthy man it was found that his haematocrit value was highly unusual – value of 60%. What one of the options below is the most likely reason? He will have a diet high in iron. He is likely to be suffering from anaemia. He lives at high altitude. He has recently recovered from an accident where he lost a lot of blood. He has a very large body size.arrow_forwardExplain what age of culture is most likely to produce an endospore?arrow_forwardExplain why hot temperatures greater than 45 degrees celsius would not initiate the sporulation process in endospores?arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning


