College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 6MCQ
The period of the object attached to a spring is T. How much time does the object need to move from the equilibrium position to half the amplitude? a. T/2 b. T/6 c. T/8 d. T/12 e. There are not enough data to answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm.
Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from
the center of the sphere.
(a) =
=
(b) E =
(c)Ẻ =
=
NC NC NC
1.
A long silver rod of radius 3.5 cm has a charge of -3.9
ис
on its surface. Here ŕ is a unit vector
ст
directed perpendicularly away from the axis of the rod as shown in the figure.
(a) Find the electric field at a point 5 cm from the center of the rod (an outside point).
E =
N
C
(b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point)
E=0
Think & Prepare
N
C
1. Is there a symmetry in the charge distribution? What kind of symmetry?
2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ
from a?
1. Determine the electric flux through each surface whose cross-section is shown below.
55
S₂
-29
S5
SA
S3
+ 9
Enter your answer in terms of q and ε
Φ
(a) s₁
(b) s₂
=
-29
(C) Φ
զ
Ερ
(d) SA
=
(e) $5
(f) Sa
$6
=
II
✓
-29
S6
+39
Chapter 10 Solutions
College Physics
Ch. 10 - Review Question 10.1 Can we say that the period of...Ch. 10 - Review Question 10.2 The velocity of an object...Ch. 10 - Review Question 10.3
What will happen to the...Ch. 10 - Review Question 10.4 The period of vibration of a...Ch. 10 - Review Question 10.5 Your grandfathers pendulum...Ch. 10 - Why was it important to assume that the springs...Ch. 10 - Review Question 10.7 What features of damped...Ch. 10 - Review Question 10.8 Describe the phenomenon of...Ch. 10 - 1. What are the features that make vibrational...Ch. 10 - 2. What does it mean if the amplitude of an...
Ch. 10 - 3. What does it mean if the period of an object’s...Ch. 10 - 4. What is the period of the kinetic or the...Ch. 10 - 5. A cart undergoing simple harmonic motion has a...Ch. 10 - The period of the object attached to a spring is...Ch. 10 - You have a simple harmonic oscillator. Where is...Ch. 10 - You have a simple harmonic oscillator. Where is...Ch. 10 - Which of the following arguments can be used to...Ch. 10 - 10. (a) Give three common examples of vibrational...Ch. 10 - An object of known mass hangs at the end of a...Ch. 10 - Describe two different ways to estimate the spring...Ch. 10 - You have a small metal ball attached to a 1.0-m...Ch. 10 - 14. A pendulum clock is running too fast. Explain...Ch. 10 - What simplifications were used to derive the...Ch. 10 - A pendulum clock is moved from the Mississippi...Ch. 10 - 17. Oil is often found in a geological structure...Ch. 10 - A pendulum and a block hanging at the end of a...Ch. 10 - Will me frequency of vibration of a swing when you...Ch. 10 - The amplitude of vibration of a swing slowly...Ch. 10 - 23. If you walk with your arms hanging down, they...Ch. 10 - You have a pendulum with a 1-m string. What is the...Ch. 10 - 1. A low-friction cart is placed between two...Ch. 10 - * You have a ball bearing ano a bowl. You let the...Ch. 10 - 3. Draw a sketch of a pendulum indicate the...Ch. 10 - Draw a graph showing the position-versus-time...Ch. 10 - Suppose that at time zero the can attached to the...Ch. 10 - * (a) Sketch a motion diagram and a...Ch. 10 - * Devise a position-versus-time function that...Ch. 10 - * The position of a vibrating object changes as a...Ch. 10 - * The velocity of a vibrating object changes as a...Ch. 10 - 11. * A cart at the end of a spring undergoes...Ch. 10 - 12. ** Refer to the situation in Problem 10.1. (a)...Ch. 10 - You exert a 100-N pull on the end of a spring....Ch. 10 - Metronome You want to make a metronome for music...Ch. 10 - Determine the frequency of vibration of the cart...Ch. 10 - 16. * A spring with a cart at its end vibrates at...Ch. 10 - 17. A cart with mass m vibrating at the end of a...Ch. 10 - 18. * A 300-g apple is placed on a horizontal...Ch. 10 - ** A 2.0-kg cart vibrates at the end of an 18-N/m...Ch. 10 - * What were the main ideas that we used to derive...Ch. 10 - 21. * A spring with a spring constant of 1200 N/m...Ch. 10 - 22. * A person exerts a 15-N force on a cart...Ch. 10 - 23. A spring with spring constant has a 1.4-kg...Ch. 10 - * Proportional reasoning By what factor must we...Ch. 10 - Proportional reasoning By what factor must we...Ch. 10 - 26. Monkey trick at zoo A monkey has a cart with a...Ch. 10 - 27. * A frictionless cart attached to a spring...Ch. 10 - A 2.0-kg cart attached to a spring undergoes...Ch. 10 - 29 * The motion of a cart attached to a horizontal...Ch. 10 - 30. Pendulum clock Shawn wants to build a clock...Ch. 10 - Show that the expression for the frequency of a...Ch. 10 - A pendulum swings with amplitude 0.020 m and...Ch. 10 - 33. * Proportional reasoning You are designing a...Ch. 10 - 34. * Building demolition A 500-kg ball at the end...Ch. 10 - 35. * You have a pendulum with a long string whose...Ch. 10 - * Variations in g The frequency of a person's...Ch. 10 - 37. EST A graph of position versus time for an...Ch. 10 - Determine the period of a 1.3-m-long pendulum on...Ch. 10 - * You have a simple pendulum that consists of a...Ch. 10 - * Equation Jeopardy The following expression...Ch. 10 - 41. * Trampoline vibration When a 60-kg boy sits...Ch. 10 - * Proportional reasoning if you double the...Ch. 10 - 43. * Pendulum on Mars The frequency of a pendulum...Ch. 10 - 44. * bio EST Annoying sound low-frequency...Ch. 10 - 45.** A 1.2-kg block sliding at 6.0 m/s on a...Ch. 10 - 108 kg. The tower sways back and forth at a...Ch. 10 - ** You shoot a 0.050-kg arrow into a 0.50-kg...Ch. 10 - 48. * You have a pendulum whose length is 1.3 m...Ch. 10 - * You hang a 0.10-kg block from a spring, causing...Ch. 10 - 50. * imagine that you have a cart on a spring...Ch. 10 - 51. Describe one situation from everyday life in...Ch. 10 - EST twins on a swing How frequently do you need to...Ch. 10 - 53. (a) Determine the maximum speed of a girl on a...Ch. 10 - Prob. 54PCh. 10 - 55. * Feeling road vibrations in a car if the...Ch. 10 - 57. A spring oscillator and a simple pendulum have...Ch. 10 - * You attach a block (mass m) to a spring (spring...Ch. 10 - * You attach a 1.6-kg object to a spring, pull it...Ch. 10 - 60. * Traveling through Earth A hole is drilled...Ch. 10 - 61. * EST Estimate the effective spring constant...Ch. 10 - *Galileos pendulum The length L of a pendulum is...Ch. 10 - 63. * A 0.5-kg low-friction cart is moving at...Ch. 10 - 103N/m. Determine (a) by how much the ball...Ch. 10 - 67. * A 5.0-g bullet traveling horizontally at an...Ch. 10 - at the start of the swinging. (a) Determine an...Ch. 10 - 70. ** Foucault's pendulum in 1851, the French...Ch. 10 - pushed to the left with initial speed v0....Ch. 10 - Prob. 72RPPCh. 10 - Prob. 73RPPCh. 10 - Prob. 74RPPCh. 10 - Prob. 75RPPCh. 10 - Prob. 76RPPCh. 10 - Prob. 77RPPCh. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...Ch. 10 - BIO Resonance vibration transfer and the ear When...
Additional Science Textbook Solutions
Find more solutions based on key concepts
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
SYNTHESIZE YOUR KNOWLEDGE Watennelon snow in Antarctica is caused by a species of photosynthetic green algae th...
Campbell Biology (11th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY