Open the PhET States of Matter Simulation (http://openstaxcollege.org/l/16phetvisual) to answer the following questions: (a) Select the Solid, Liquid, Gas tab. Explore by selecting different substances, heating and cooling the systems, and changing the state. What similarities do you notice between the four substances for each phase (solid, liquid, gas)? What differences do you notice? (b) For each substance, select each of the states and record the given temperatures. How do the given temperatures for each state correlate with the strengths of their intermolecular attractions? Explain. (c) Select the Interaction Potential tab, and use the default neon atoms. Move the Ne atom on the right and observe how the potential energy changes. Select the Total Force button, and move the Ne atom as before. When is the total force on each atom attractive and large enough to matter’? Then select the Component Forces button, and move the Ne atom. When do the attractive (van der Waals) and repulsive (electron overlap) forces balance? How does this relate to the potential energy versus the distance between atoms graph? Explain.
Open the PhET States of Matter Simulation (http://openstaxcollege.org/l/16phetvisual) to answer the following questions: (a) Select the Solid, Liquid, Gas tab. Explore by selecting different substances, heating and cooling the systems, and changing the state. What similarities do you notice between the four substances for each phase (solid, liquid, gas)? What differences do you notice? (b) For each substance, select each of the states and record the given temperatures. How do the given temperatures for each state correlate with the strengths of their intermolecular attractions? Explain. (c) Select the Interaction Potential tab, and use the default neon atoms. Move the Ne atom on the right and observe how the potential energy changes. Select the Total Force button, and move the Ne atom as before. When is the total force on each atom attractive and large enough to matter’? Then select the Component Forces button, and move the Ne atom. When do the attractive (van der Waals) and repulsive (electron overlap) forces balance? How does this relate to the potential energy versus the distance between atoms graph? Explain.
Open the PhET States of Matter Simulation (http://openstaxcollege.org/l/16phetvisual) to answer the following questions:
(a) Select the Solid, Liquid, Gas tab. Explore by selecting different substances, heating and cooling the systems, and changing the state. What similarities do you notice between the four substances for each phase (solid, liquid, gas)? What differences do you notice?
(b) For each substance, select each of the states and record the given temperatures. How do the given temperatures for each state correlate with the strengths of their intermolecular attractions? Explain.
(c) Select the Interaction Potential tab, and use the default neon atoms. Move the Ne atom on the right and observe how the potential energy changes. Select the Total Force button, and move the Ne atom as before. When is the total force on each atom attractive and large enough to matter’? Then select the Component Forces button, and move the Ne atom. When do the attractive (van der Waals) and repulsive (electron overlap) forces balance? How does this relate to the potential energy versus the distance between atoms graph? Explain.
Definition Definition Substance that constitutes everything in the universe. Matter consists of atoms, which are composed of electrons, protons, and neutrons. Different atoms combine together to give rise to molecules that act as a foundation for all kinds of substances. There are five states of matter based on their energies of attraction: solid, liquid, gases, plasma, and BEC (Bose-Einstein condensates).
Q1: Curved Arrows, Bronsted Acids & Bases, Lewis Acids & Bases
Considering the following reactions:
a) Predict the products to complete the reactions.
b) Use curved electron-pushing arrows to show the mechanism for the reaction in
the forward direction. Redraw some of the compounds to explicitly illustrate all
bonds that are broken and all bonds that are formed.
c) Label Bronsted acids and bases in the left side of the reactions. Label conjugate
acids and bases in the right side of the reactions.
d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the
reactions.
A.
+
OH
CH30:
OH
B.
+
HBr
C.
H₂SO4
D.
CF 3.
CH 3
+
HCI
N
H
fluoxetine
antidepressant
1↓
JDownload
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY