Concept explainers
(a)
The rotational kinetic energy.
(a)
Answer to Problem 54P
The rotational kinetic energy for the system is
Explanation of Solution
Redraw the figure P10.54.
Consider that the vertically standing to be initial position and horizontal to be the final position.
Write the equation for conservation of energy.
Here,
From the law of conservation of energy, gain in rotational kinetic energy equals to loss in gravitational potential energy for the given system.
Write the expression for rotational kinetic energy.
Here,
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for loss in gravitational potential energy for rod.
Here,
Substitute
Conclusion:
Substitute
Thus, the rotational kinetic energy for the system is
(b)
The angular speed of the rod and ball.
(b)
Answer to Problem 54P
The angular speed of the ball and the rod is
Explanation of Solution
Write the expression for moment of inertia of sphere at center.
Here,
Write the expression for the parallel axis theorem for moment of inertia at point
Here,
Substitute
Write the expression for moment of inertia of rod at point
Here,
Write the expression for net moment of inertia for the whole system.
Here,
Substitute
Write the expression for rotational kinetic energy.
Here,
Simply the above equation for value of
Conclusion:
Substitute
Substitute
Thus, the angular speed of the ball and the rod is
(c)
Thelinear speed of the center of mass of the ball.
(c)
Answer to Problem 54P
The linear speed of the ball of center of mass is
Explanation of Solution
Write the expression for linear speed of the ball.
Here,
Substitute
Here,
Conclusion:
Substitute
Thus, the linear speed of the ball of center of mass is
(d)
Compare the speed with the speed had the ball fallen freelythrough the same distance of
(d)
Answer to Problem 54P
The rod pulls the sphere down together while rotating by the speed factor
Explanation of Solution
Loss in gravitational potential energy will be equal to gain in kinetic energy.
Write the expression for the conservation of energy.
Write the expression for loss in gravitational potential energy for sphere.
Here,
Write the expression for gain kinetic energy.
Here,
Substitute
Write the expression for the ratio of new speed to the original speed.
Here,
Conclusion:
Substitute
Substitute
Thus, the rod pulls the sphere down together while rotating by more speed than in direct falling by the factor of
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers With Modern Physics
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning