Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 51P
The top in Figure P10.51 has a moment of inertia of 4.00 × 10–4 kg·m2 and is initially at rest. It is free to rotate about the stationary axis AA′. A string, wrapped around a peg along the axis of the top, is pulled in such a manner as to maintain a constant tension of 5.57 N. If the string does not slip while it is unwound from the peg, what is the angular speed of the top after 80.0 cm of string has been pulled off the peg?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?
No chatgpt pls will upvote
Correct answer
No chatgpt pls will upvote
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 10.1 - A rigid object rotates in a counterclockwise sense...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Rebecca are riding on a merry-go-round....Ch. 10.4 - Prob. 10.4QQCh. 10.5 - You turn off your electric drill and find that the...Ch. 10.7 - A section of hollow pipe and a solid cylinder have...Ch. 10.9 - A ball rolls without slipping down incline A,...Ch. 10 - Prob. 1OQCh. 10 - Consider an object on a rotating disk a distance r...Ch. 10 - Prob. 3OQ
Ch. 10 - Prob. 4OQCh. 10 - Suppose a cars standard tires are replaced with...Ch. 10 - Figure OQ10.6 shows a system of four particles...Ch. 10 - Prob. 7OQCh. 10 - Prob. 8OQCh. 10 - Prob. 9OQCh. 10 - Prob. 10OQCh. 10 - A solid aluminum sphere of radius R has moment of...Ch. 10 - Prob. 1CQCh. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Prob. 4CQCh. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - (a) What is the angular speed of the second hand...Ch. 10 - Prob. 10CQCh. 10 - Prob. 11CQCh. 10 - Prob. 12CQCh. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...Ch. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - Prob. 11PCh. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - Prob. 13PCh. 10 - Review. Consider a tall building located on the...Ch. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Figure P10.18 shows the drive train of a bicycle...Ch. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - Prob. 28PCh. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - Prob. 31PCh. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - Prob. 39PCh. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Prob. 41PCh. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Three identical thin rods, each of length L and...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - Prob. 48PCh. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - The top in Figure P10.51 has a moment of inertia...Ch. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - (a) Determine the acceleration of the center of...Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - Prob. 63PCh. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - Prob. 65PCh. 10 - Prob. 66APCh. 10 - Prob. 67APCh. 10 - Prob. 68APCh. 10 - Prob. 69APCh. 10 - Prob. 70APCh. 10 - Review. A mixing beater consists of three thin...Ch. 10 - Prob. 72APCh. 10 - Prob. 73APCh. 10 - Prob. 74APCh. 10 - Prob. 75APCh. 10 - Prob. 76APCh. 10 - Review. As shown in Figure P10.77, two blocks are...Ch. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Prob. 79APCh. 10 - Prob. 80APCh. 10 - Prob. 81APCh. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - Prob. 84APCh. 10 - Prob. 85APCh. 10 - Review. A clown balances a small spherical grape...Ch. 10 - A plank with a mass M = 6.00 kg rests on top of...Ch. 10 - Prob. 88CPCh. 10 - Prob. 89CPCh. 10 - Prob. 90CPCh. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - A cord is wrapped around a pulley that is shaped...Ch. 10 - Prob. 93CPCh. 10 - A uniform, hollow, cylindrical spool has inside...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY