
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 4RQ
To determine
The reasons why variable type devices have been replaced with attribute type devices.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1
8
4
Add numbers so that the sum of any
row or column equals .30 Use only
these numbers:
.1.2.3.4.5.6.10.11.12.12.13.14.14
Uppgift 2 (9p)
I77777
20 kN
10 kN/m
4
[m]
2
2
Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges
med både läge och värde i diagrammen.
**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…
Chapter 10 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 10 - What are some of the advantages to the consumer of...Ch. 10 - DFMÂ stands for design for manufacturing. Why is...Ch. 10 - Explain the difference between attributes and...Ch. 10 - Prob. 4RQCh. 10 - What are the four basic measures upon which all...Ch. 10 - What are gage blocks?Ch. 10 - Why do gage blocks come in sets?Ch. 10 - Prob. 8RQCh. 10 - What is the difference between accuracy and...Ch. 10 - What is the difference between tolerance and...
Ch. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Why might you use a shrink fit to join the wheels...Ch. 10 - Explain the difference between repeatability and...Ch. 10 - When measuring time, is it more important to be...Ch. 10 - Prob. 16RQCh. 10 - What factors should be considered in selecting...Ch. 10 - Prob. 18RQCh. 10 - What is parallax? (Why do linesmen in tennis sit...Ch. 10 - Explain the rule of 10 in terms of tolerances.Ch. 10 - How does the vernier caliper work to make...Ch. 10 - What are the two most likely sources of error in...Ch. 10 - What is the major disadvantage of a micrometer...Ch. 10 - What is the main advantage of a micrometer over...Ch. 10 - What is the major difficulty in obtaining an...Ch. 10 - Why is the toolmakers microscope particularly...Ch. 10 - What are the ways that linear measurements can be...Ch. 10 - What type of instrument would you select for...Ch. 10 - What are the chief disadvantages of using a vision...Ch. 10 - What is a CMM (coordinate measuring machine)?Ch. 10 - Prob. 31RQCh. 10 - How can the no�go member of a plug gage be...Ch. 10 - What is the primary precaution that should be...Ch. 10 - What tolerances are added to gages when they are...Ch. 10 - Explain how a go/no�go ring gage works to check...Ch. 10 - Why are air gages particularly well suited for...Ch. 10 - Explain the principle of measurement by...Ch. 10 - How does a toolmakers flat differ from an optical...Ch. 10 - Prob. 1PCh. 10 - Read the 25�division vernier graduated in metric...Ch. 10 - In Figure 10.C , the sleeve�thimble region of...Ch. 10 - Suppose that in Figure 10.31 the height of the...Ch. 10 - What is the estimated error in this measurement,...Ch. 10 - Figure 10.D shows the sleeve�thimble region of...Ch. 10 - In Figure 10.E , two examples of a metric...Ch. 10 - Prob. 8PCh. 10 - Figure 10.F shows a section of a vernier...Ch. 10 - Here is a table that provides a description of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- please solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forwardplease solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forward
- please help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forward
- plese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forward
- PROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forwardDistilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning

Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY