
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 19RQ
What is parallax? (Why do linesmen in tennis sit looking down the line?)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.
Using the Bernoulli equation to find the general solution. If an initial condition is given, find
the particular solution.
y' + xy = xy¯¹, y(0) = 3
Test for exactness. If exact, solve. If not, use an integrating factor as given or obtained by
inspection or by the theorems in the text.
a. 2xydx+x²dy = 0
b. (x2+y2)dx-2xydy = 0
c. 6xydx+5(y + x2)dy = 0
Chapter 10 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 10 - What are some of the advantages to the consumer of...Ch. 10 - DFMÂ stands for design for manufacturing. Why is...Ch. 10 - Explain the difference between attributes and...Ch. 10 - Prob. 4RQCh. 10 - What are the four basic measures upon which all...Ch. 10 - What are gage blocks?Ch. 10 - Why do gage blocks come in sets?Ch. 10 - Prob. 8RQCh. 10 - What is the difference between accuracy and...Ch. 10 - What is the difference between tolerance and...
Ch. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Why might you use a shrink fit to join the wheels...Ch. 10 - Explain the difference between repeatability and...Ch. 10 - When measuring time, is it more important to be...Ch. 10 - Prob. 16RQCh. 10 - What factors should be considered in selecting...Ch. 10 - Prob. 18RQCh. 10 - What is parallax? (Why do linesmen in tennis sit...Ch. 10 - Explain the rule of 10 in terms of tolerances.Ch. 10 - How does the vernier caliper work to make...Ch. 10 - What are the two most likely sources of error in...Ch. 10 - What is the major disadvantage of a micrometer...Ch. 10 - What is the main advantage of a micrometer over...Ch. 10 - What is the major difficulty in obtaining an...Ch. 10 - Why is the toolmakers microscope particularly...Ch. 10 - What are the ways that linear measurements can be...Ch. 10 - What type of instrument would you select for...Ch. 10 - What are the chief disadvantages of using a vision...Ch. 10 - What is a CMM (coordinate measuring machine)?Ch. 10 - Prob. 31RQCh. 10 - How can the no�go member of a plug gage be...Ch. 10 - What is the primary precaution that should be...Ch. 10 - What tolerances are added to gages when they are...Ch. 10 - Explain how a go/no�go ring gage works to check...Ch. 10 - Why are air gages particularly well suited for...Ch. 10 - Explain the principle of measurement by...Ch. 10 - How does a toolmakers flat differ from an optical...Ch. 10 - Prob. 1PCh. 10 - Read the 25�division vernier graduated in metric...Ch. 10 - In Figure 10.C , the sleeve�thimble region of...Ch. 10 - Suppose that in Figure 10.31 the height of the...Ch. 10 - What is the estimated error in this measurement,...Ch. 10 - Figure 10.D shows the sleeve�thimble region of...Ch. 10 - In Figure 10.E , two examples of a metric...Ch. 10 - Prob. 8PCh. 10 - Figure 10.F shows a section of a vernier...Ch. 10 - Here is a table that provides a description of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
Course Grades In a course, a teacher gives the following tests and assignments: A lab activity that is observed...
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Write a Vole program that subtracts the value stored at 0xA1 from the value stored at address 0xA2 and places t...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
Write a class declaration named Circle with a private member variable named radius. Write set and get functions...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Explain the term foreign key, and give an example.
Database Concepts (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Newton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward
- = MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward
- = MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forward
- Sketch and Describe a hatch coaming and show how the hatch coamings are framed in to ships strucure?arrow_forwardSketch and describe hatch coamings. Describe structrual requirements to deck plating to compensate discontinuity for corners of a hatch. Show what is done to the deck plating when the decks are cut away and include the supporting members.arrow_forwardAn Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning

Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Mod-01 Lec-16 Basics of Instrumentation; Author: nptelhrd;https://www.youtube.com/watch?v=qbKnW42ZM5c;License: Standard YouTube License, CC-BY