Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 46E
The average human lung expands by about 0.50 L during each breath. If this expansion occurs against an external pressure of 1.0 atm, how much work (in J) is done during the expansion?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 10 - A chemical system produces 155 kJ of heat and does...Ch. 10 - Which sample is most likely to undergo the...Ch. 10 - Prob. 3SAQCh. 10 - A 12.5-g sample of granite initially at 82.0 C is...Ch. 10 - A cylinder with a moving piston expands from an...Ch. 10 - When a 3.80-g sample of liquid octane (C8H18)...Ch. 10 - Hydrogen gas reacts with oxygen to form water....Ch. 10 - Manganese reacts with hydrochloric acid to produce...Ch. 10 - Consider the reactions: A2BH1A3CH2 What is H for...Ch. 10 - Use standard enthalpies of formation to determine...
Ch. 10 - Prob. 11SAQCh. 10 - Prob. 12SAQCh. 10 - Prob. 13SAQCh. 10 - Which set of compounds is arranged in order of...Ch. 10 - Prob. 15SAQCh. 10 - What is thermochemistry? Why is it important?Ch. 10 - What is energy? What is work? List some examples...Ch. 10 - Prob. 3ECh. 10 - What is the law of conservation of energy? How...Ch. 10 - A friend claims to have constructed a machine that...Ch. 10 - What is a state function? List some examples of...Ch. 10 - What is internal energy? Is internal energy a...Ch. 10 - If energy flows out of a chemical system and into...Ch. 10 - If the internal energy of the products of a...Ch. 10 - What is heat? Explain the difference between heat...Ch. 10 - How is the change in internal energy of a system...Ch. 10 - Explain how the sum of heat and work can be a...Ch. 10 - What is heat capacity? Explain the difference...Ch. 10 - Explain how the high specific heat capacity of...Ch. 10 - If two objects, A and B, of different temperature...Ch. 10 - What is pressure-volume work? How is it...Ch. 10 - What is calorimetry? Explain the difference...Ch. 10 - What is the change in enthalpy ( H) for a...Ch. 10 - Explain the difference between an exothermic and...Ch. 10 - From a molecular viewpoint where does the energy...Ch. 10 - From a molecular viewpoint, where does the energy...Ch. 10 - Is the change in enthalpy for a reaction an...Ch. 10 - Explain how the value of H for a reaction changes...Ch. 10 - What is Hess's law? Why is it useful?Ch. 10 - What is a standard state? What is the standard...Ch. 10 - How can bond energies be used to estimate H for a...Ch. 10 - Explain the difference between exothermic and...Ch. 10 - What is the standard enthalpy of formation for a...Ch. 10 - How do you calculate Hrxn from tabulated standard...Ch. 10 - What is lattice energy? How does lattice energy...Ch. 10 - Which statement is true of the internal energy of...Ch. 10 - During an energy exchange, a chemical system...Ch. 10 - Identify each energy exchange as primarily heat or...Ch. 10 - Identify each energy exchange as primarily heat or...Ch. 10 - A system releases 622 kJ of heat and does 105 kJ...Ch. 10 - A system absorbs 196 kJ of heat, and the...Ch. 10 - The gas in a piston (defined as the system) warms...Ch. 10 - The air in an inflated balloon (defined as the...Ch. 10 - A person packs two identical coolers for a picnic,...Ch. 10 - A kilogram of aluminum metal and a kilogram of...Ch. 10 - How much heat is required to warm 1.50 L of water...Ch. 10 - How much heat is required to warm 1.50 kg of sand...Ch. 10 - Suppose that 25 g of each substance is initially...Ch. 10 - An unknown mass of each substance, initially at...Ch. 10 - How much work (in J) is required to expand the...Ch. 10 - The average human lung expands by about 0.50 L...Ch. 10 - The air within a piston equipped with a cylinder...Ch. 10 - A gas is compressed from an initial volume of 5.55...Ch. 10 - When 1 mol of a fuel burns at constant pressure,...Ch. 10 - The change in internal energy for the combustion...Ch. 10 - Is each process exothermic or endothermic?...Ch. 10 - Is each process exothermic or endothermic?...Ch. 10 - Consider the thermochemical equation for the...Ch. 10 - What mass of natural gas (CH4) must bum to emit...Ch. 10 - Nitromethane (CH3NO2) burns in air to produce...Ch. 10 - Titanium reacts with iodine to form titanium (III)...Ch. 10 - The propane fuel (C3H8) used in gas barbeques bums...Ch. 10 - Charcoal is primarily carbon. Determine the mass...Ch. 10 - We submerge a silver block, initially at 58.5 °C...Ch. 10 - We submerge a 32.5-g iron rod, initially at 22.7...Ch. 10 - We submerge a 31.1-g wafer of pure gold initially...Ch. 10 - We submerge a 2.85-g lead weight, initially at...Ch. 10 - Two substances, A and B, initially at different...Ch. 10 - A 2.74-g sample of a substance suspected of being...Ch. 10 - Exactly 1.5 g of a fuel burns under conditions of...Ch. 10 - In order to obtain the largest possible amount of...Ch. 10 - When 0.514 g of biphenyl (C12H10) undergoes...Ch. 10 - Mothballs are composed primarily of the...Ch. 10 - Zinc metal reacts with hydrochloric acid according...Ch. 10 - Instant cold packs used to ice athletic injuries...Ch. 10 - For each generic reaction, determine the value of...Ch. 10 - Consider the generic reaction: A+2BC+3DH=155kJ...Ch. 10 - Calculate Hrxn for the reaction:...Ch. 10 - Calculate Hrxn for the reaction:...Ch. 10 - Calculate Hrxn for the reaction:...Ch. 10 - Calculate Hrxn for the reaction:...Ch. 10 - Hydrogenation reactions are used to add hydrogen...Ch. 10 - Ethanol is a possible fuel. Use average bond...Ch. 10 - Hydrogen, a potential future fuel, can be produced...Ch. 10 - Hydroxyl radicals react with and eliminate many...Ch. 10 - Write an equation for the formation of each...Ch. 10 - Prob. 82ECh. 10 - S3. Hydrazine (N2H4) is a fuel used by some...Ch. 10 - Prob. 84ECh. 10 - Prob. 85ECh. 10 - Prob. 86ECh. 10 - Prob. 87ECh. 10 - Prob. 88ECh. 10 - Top fuel dragsters and funny cars burn...Ch. 10 - Prob. 90ECh. 10 - Prob. 91ECh. 10 - Rubidium iodide has a lattice energy of-617...Ch. 10 - Prob. 93ECh. 10 - Prob. 94ECh. 10 - Use the Born-Haber cycle and data from Appendix...Ch. 10 - Prob. 96ECh. 10 - The kinetic energy of a rolling billiard ball is...Ch. 10 - A100-W light bulb is placed in a cylinder equipped...Ch. 10 - Evaporating sweat cools the body because...Ch. 10 - LP gas burns according to the exothermic reaction:...Ch. 10 - Use standard enthalpies of formation to calculate...Ch. 10 - Dry ice is solid carbon dioxide. Instead of...Ch. 10 - A 25.5-g aluminum block is warmed to 65.4 °C and...Ch. 10 - We mix 50.0 mL of ethanol (density = 0.789 g/mL)...Ch. 10 - Prob. 105ECh. 10 - Prob. 106ECh. 10 - One tablespoon of peanut butter has a mass of 16...Ch. 10 - Prob. 108ECh. 10 - Prob. 109ECh. 10 - When we burn 10.00 g of phosphorus in O2 (g) to...Ch. 10 - The H for the oxidation of S in the gas phase to...Ch. 10 - The Hfo of TiI3(s) is -328 kJ/mol; and the Ho for...Ch. 10 - A copper cube measuring 1.55 cm on edge and an...Ch. 10 - A pure gold ring and pure silver ring have a total...Ch. 10 - The reaction of Fe2O3(s) with Al(s) to form...Ch. 10 - Prob. 116ECh. 10 - Prob. 117ECh. 10 - Prob. 118ECh. 10 - Prob. 119ECh. 10 - Calculate the heat of atomization (see previous...Ch. 10 - Prob. 121ECh. 10 - Prob. 122ECh. 10 - Prob. 123ECh. 10 - Prob. 124ECh. 10 - Prob. 125ECh. 10 - Find H, E, q, and w for the freezing of water at...Ch. 10 - The heat of vaporization of water at 373 K is 40.7...Ch. 10 - Prob. 128ECh. 10 - Prob. 129ECh. 10 - Prob. 130ECh. 10 - Prob. 131ECh. 10 - Prob. 132ECh. 10 - Prob. 133ECh. 10 - Which expression describes the heat emitted in a...Ch. 10 - Prob. 135ECh. 10 - Prob. 136ECh. 10 - Prob. 137ECh. 10 - Prob. 138ECh. 10 - Prob. 139ECh. 10 - Which statement is true of a reaction in which V...Ch. 10 - Which statement is true of an endothermic...Ch. 10 - When a firecracker explodes, energy is obviously...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardThe combustion of methane, is an exothermic process. Therefore, the products of this reaction must possess (higher/ lower) total potential energy than do the reactants.arrow_forwardIn which of the following systems is(are) work done by the surroundings on the system? Assume pressure and temperature are constant. a. 2SO2(g)+O2(g)2SO3(g) b.CO2(s)CO2(g) c. 4NH3(g)+7O2(g)4NO2(g)+6H2O(g) d.N2O4(g)2NO2(g) e.CaCO3(s)CaCO(s)+CO2(g)arrow_forward
- When calcium carbonate, CaCO3 (the major constituent of limestone and seashells), is heated, it decomposes to calcium oxide (quicklime). CaCO3(s)CaO(s)+CO2(g);H=177.9kJ How much heat is required to decompose 21.3 g of calcium carbonate?arrow_forwardConsider the following reaction in the vessel described in Question 57. A(g)+B(g)C(s)For this reaction, E=286 J, the piston moves up and the system absorbs 388 J of heat from its surroundings. (a) Is work done by the system? (b) How much work?arrow_forwardA piston performs work of 210. L atm on the surroundings, while the cylinder in which it is placed expands from 10. L to 25 L. At the same time, 45 J of heat is transferred from the surroundings to the system. Against what pressure was the piston working?arrow_forward
- A small car is traveling at twice the speed of a larger car, which has twice the mass of the smaller car. Which car has the greater kinetic energy? (Or do they both have the same kinetic energy?)arrow_forwardWhen a 0.740-g sample of trinitrotoluene (TNT), C7H5N2O6, is burned in a bomb calorimeter, the temperature increases from 23.4 C to 26.9 C. The heat capacity of the calorimeter is 534 J/C, and it contains 675 mL of water. How much heat was produced by the combustion of the TNT sample?arrow_forwardWhen solid iron burns in oxygen gas (at constant pressure) to produce Fe2O3(s), 1651 kJ of heat is released for every 4 mol of iron burned. How much heat is released when 10.3 g Fe2O3(s) is produced (at constant pressure)? What additional information would you need to calculate the heat released to produce this much Fe2O3(s) if you burned iron in ozone gas, O3(g), instead of O2(g)?arrow_forward
- Ammonium nitrate is an oxidizing agent and can give rise to explosive mixtures. A mixture of 2.00 mol of powdered aluminum and 3.00 mol of ammonium nitrate crystals reacts exothermically yielding nitrogen gas, water vapor, and aluminum oxide. How many grams of the mixture are required to provide 245 kJ of heat? See Appendix C for data.arrow_forwardA sample of 0.562 g of carbon is burned in oxygen in a bomb calorimeter, producing carbon dioxide. Assume both the reactants and products are under standard state conditions, and that the heat released is directly proportional to the enthalpy of combustion of graphite. The temperature of the calorimeter increases from 26.74 C to 27.93 C. What is the heat capacity of the calorimeter and its contents?arrow_forwardWhich of the following processes is endothermic? a. ice melting b. a piece of paper burning c. a bomb exploding d. an organisms metabolism producing a certain amount of heatarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY