PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 44EAP
It’s been a great day of new, frictionless snow. Julie starts at the top of the 60° slope shown in FIGURE P10.44. At the bottom, a circular arc carries her through a 90° turn, and she then launches off a 3.0-m-high ramp. How far horizontally is her touchdown point from the end of the ramp?
FIGURE P10.44
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It's been a great day of new, frictionless snow. Julie starts
at the top of the 60° slope shown in the figure. At the
bottom, a circular arc carries her through a 90° turn, and
she then launches off a 3 m-high ramp. How far
horizontally is her touchdown point from the end of the
ramp?
25 m
90°
60°
$3.0 m
A Ferris wheel is a vertical, circular amusement ride with radius, R = 5 m. Riders sit on seats that swivel to remain
horizontal. The Ferris wheel rotates so that riders move at a constant speed, v = 5 m/s. Consider a rider whose mass, m =
70 kg.
Assume that the acceleration due to gravity, g = 10 m/s₂.
H
B
*
L.
How much work does the force exerted by the seat do on the rider as they move from point E to point ?
O None of these, because the rider's speed does not change
O 3500)
O-3501
O-3500
Keep the track tilted at 14° with the horizontal. Put the friction block on the track surface at the top
of the track. Let the friction block slide downwards. The length of the track is 65 cm. Starting from
zero speed at the top of the track, what will be the speed of the friction block as it reaches the
bottom? Write your answer in m/s. Use u = 0.12 and mass of the friction block = 400 grams.
Chapter 10 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 10 - Prob. 1CQCh. 10 - Can kinetic energy ever be negative? Can...Ch. 10 - Prob. 3CQCh. 10 - 4. The three balls in FIGURE Q1O.4, which have...Ch. 10 - Rank in order, from most to least, the elastic...Ch. 10 - 6. A spring is compressed 1.0 cm. How far must you...Ch. 10 - Prob. 7CQCh. 10 - A particle with the potential energy shown in...Ch. 10 - A compressed spring launches a block up an...Ch. 10 - 10. A process occurs in which a system’s potential...
Ch. 10 - A process occurs in which a system’s potential...Ch. 10 - FIGURE Q10.12 is the energy bar chart for a...Ch. 10 - Prob. 13CQCh. 10 - Object A is stationary while objects B and C are...Ch. 10 - Prob. 2EAPCh. 10 - 3. The lowest point in Death Valley is 85 m below...Ch. 10 - Prob. 4EAPCh. 10 - Prob. 5EAPCh. 10 - 6. What height does a frictionless playground...Ch. 10 - 7. A 55 kg skateboarder wants to just make it to...Ch. 10 - Prob. 8EAPCh. 10 - A pendulum is made by tying a 500 g ball to a...Ch. 10 - A 20 kg child is on a swing that hangs from...Ch. 10 - A 1500 kg car traveling at 10 m/s suddenly runs...Ch. 10 - Prob. 12EAPCh. 10 - A cannon tilted up at a 30° angle fires a cannon...Ch. 10 - In a hydroelectric dam, water falls 25 m and then...Ch. 10 - How far must you stretch a spring with k = 000 N/m...Ch. 10 - A stretched spring stores 2.0 J of energy. How...Ch. 10 - A student places her 500 g physics book on a...Ch. 10 - A block sliding along a horizontal frictionless...Ch. 10 - A 10 kg runaway grocery cart runs into a spring...Ch. 10 - As a 15,000 kg jet plane lands on an aircraft...Ch. 10 - The elastic energy stored in your tendons can...Ch. 10 - The spring in FIGURE EX10.22a is compressed by ?x....Ch. 10 - The spring in FIGURE EXIO.23a is compressed by ?x....Ch. 10 - FIGURE EX10.24 is the potential-energy diagram for...Ch. 10 - Prob. 25EAPCh. 10 - In FIGURE EX10.26, what is the maximum speed of a...Ch. 10 - Prob. 27EAPCh. 10 - FIGURE EX10.28 shows the potential energy of a 500...Ch. 10 - In FIGURE EX10.28, what is the maximum speed a 200...Ch. 10 - A system in which only one particle can move has...Ch. 10 - A system in which only one particle can move has...Ch. 10 - A particle moving along the y-axis is in a system...Ch. 10 - A particle moving along the x-axis is in a system...Ch. 10 - FIGURE EX10.34 shows the potential energy of a...Ch. 10 - A particle moves from A to D in FIGURE EX10.35...Ch. 10 - A force does work on a 50 g particle as the...Ch. 10 - A system loses 400 J of potential energy. In the...Ch. 10 - What is the final kinetic energy of the system for...Ch. 10 - How much work is done by the environment in the...Ch. 10 - A cable with 20.0 N tension pulls straight up on a...Ch. 10 - A very slippery ice cube slides in a vertical...Ch. 10 - A 50 g ice cube can slide up and down a...Ch. 10 - You have been hired to design a spring-launched...Ch. 10 - It’s been a great day of new, frictionless snow....Ch. 10 - Prob. 45EAPCh. 10 - A 1000 kg safe is 2.0 m above a heavy-duty spring...Ch. 10 - You have a ball of unknown mass, a spring with...Ch. 10 - Sam, whose mass is 75 kg, straps on his skis and...Ch. 10 - A horizontal spring with spring constant 100 N/m...Ch. 10 - Truck brakes can fail if they get too hot. In some...Ch. 10 - Prob. 51EAPCh. 10 - Use work and energy to find an expression for the...Ch. 10 - Prob. 53EAPCh. 10 - The spring shown in FIGURE 10.54 is compressed 50...Ch. 10 - Prob. 55EAPCh. 10 - Prob. 56EAPCh. 10 - A system has potential energy U(x) = x + sin ((2...Ch. 10 - Prob. 58EAPCh. 10 - Prob. 59EAPCh. 10 - Prob. 60EAPCh. 10 - The potential energy for a particle that can move...Ch. 10 - A particle that can move along the x-axis...Ch. 10 - An object moving in the xy-plane is subjected to...Ch. 10 - An object moving in the xy-plane is subjected to...Ch. 10 - Prob. 65EAPCh. 10 - In Problems 66 through 68 you are given the...Ch. 10 - Prob. 67EAPCh. 10 - Prob. 68EAPCh. 10 - A pendulum is formed from a small ball of mass m...Ch. 10 - Prob. 70EAPCh. 10 - Prob. 71EAPCh. 10 - Prob. 72EAPCh. 10 - The spring in FIGURE CP10.73 has a spring constant...Ch. 10 - A sled starts from rest at the top of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below shows a roller-coaster car on a track. The car is fully loaded with passengers and has a total mass of 485 kg. At point A, the car is at the lowest point in a circular arc of radius r1 = 12.0 m. At point B, the car is at the highest point of a circular arc of radius r2 = 16.8 m. What is the maximum speed (in m/s) the car can have at point B in order for the car to maintain contact with the track at all times (that is, so that it does not "jump" off the track)?arrow_forwardThe figure below shows a roller-coaster car on a track. The car is fully loaded with passengers and has a total mass of 485 kg. At point A, the car is at the lowest point in a circular arc of radius r1 = 12.0 m. At point B, the car is at the highest point of a circular arc of radius r2 = 16.8 m. If the car has a speed of 25.0 m/s at point A, what is the magnitude of the force (in N) of the track on the car at this point?arrow_forwardDuring a performance in an airshow, a 529 kg stunt plane makes a circular horizontal turn of radius 63 meters. The plane experiences a constant acceleration of 6.4 g’s during the turn. What is the kinetic energy of the aircraft?arrow_forward
- Please help i don’t know how to slove?arrow_forwardA wind turbine works by slowing the air that passes its blades and converting much of the extracted kinetic energy to electric energy. A large wind turbine has 45-m-radius blades. In typical conditions, 92,000 kg of air moves past the blades every second. If the air is moving at 12 m/s before it passes the blades and the wind turbine extracts 40% of this kinetic energy, how much energy is extracted every second?arrow_forwardA knight has an idea to break into a fortress by knocking a wall down with a rolling boulder. The plan is to roll the boulder from the top of a hill to hit the wall at the bottom of the hill. The boulder will need to have a speed of 15.0 m/s to break the wall. What is the minimum height the hill can have for the knight's plan to succeed? Assume the hill is frictionless and that the numerical answer you give is in meters.arrow_forward
- A 108 kg crate slides down a ramp, starting from rest. The ramp is inclined at an angle of 36.4 degrees with respect to the horizontal and has a height of 1.03 m. The crate is placed on frictionless casters so that it slides down the ramp without friction. What is the final speed of the crate (in m/s) just as it reaches the bottom of the ramp? Use g = 9.81 m/s².arrow_forwarddegrees Question 8. A wrecking ball swings at the end of a 11.2-m cable on a vertical circular arc. The crane operator manages to give the ball a speed of 10.1 m/s as the ball passes through the lowest point of its swing and then gives the ball no further assistance. Friction and air resistance are negligible. What speed vf does the ball have when the cable makes an angle of 21.8° with respect to the vertical? Ans: 9.29 m/s the foctort accelerating animals, for it can go from rest toarrow_forwardYou have a new internship, where you are helping to design a new freight yard for the train station in your city. There will be a number of dead-end sidings where single cars can be stored until they are needed. To keep the cars from running off the tracks at the end of the siding, you have designed a combination of two coiled springs as illustrated in Figure P7.41. When a car moves to the right in the figure and strikes the springs, they exert a force to the left on the car to slow it down. Both springs are described by Hooke's law and have spring constants k1= 1600 N/m and k2 = 3400 N/m. After the first spring compresses by a distance of d = 30.0 cm, the second spring acts with the first to increase the force to the left on the car in Figure P7.41.When the spring with spring constant k2 compresses by 50.0 cm, the coils of both springs are pressed together, so that the springs can no longer compress. A typical car on the siding has a mass of 6000 kg. When you present your design to…arrow_forward
- A wrecking ball swings at the end of a 14.4-m cable on a vertical circular arc. The crane operator manages to give the ball a speed of 13.5 m/s as the ball passes through the lowest point of its swing and then gives the ball no further assistance. Friction and air resistance are negligible. What speed vf does the ball have when the cable makes an angle of 14.5 ° with respect to the vertical? Vf Number i Unitsarrow_forwardA stunt performer swings on a 33.0 m long cable initially inclined at an angle of 31.0° with the vertical. (Assume the cable has negligible mass.) a. What is the stunt performer's speed (in m/s) at the bottom of the swing if she starts from rest? b. What is the stunt performer's speed (in m/s) at the bottom of the swing if instead she pushes off with a speed of 6.00 m/s?arrow_forwardPleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY