(a) Solve the following system of equations by LU decomposition without pivoting
(b) Determine the matrix inverse. Check your results by verifying that
(a)
To calculate: The solution of the system of equations given below by LU decomposition without pivoting.
Answer to Problem 3P
Solution:
The solution of the system of equations is
Explanation of Solution
Given:
The system of equations,
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
Calculation:
Consider the system of equations,
The coefficient
And subtracting the result from equation (2).
Thus, multiply equation (1) by
Now subtract this equation from equation (2),
The coefficient
And subtracting the result from equation (3).
Thus, multiply equation (1) by
Now subtract this equation from equation (3),
Now the set of equations is,
The factors
The coefficient
And subtracting the result from equation (5). Thus, multiply equation (4) by
Now, subtract this equation from equation (5),
The factor
Therefore, the LU decomposition is
Now, to find the solution of the given system:
The forward substitution equations for L can be expressed as,
Solve for
Solve for
Solve for
Thus,
Now, perform backward substitution:
Solve for
Solve for
Solve for
Thus,
(b)
To calculate: The matrix inverse for given system of equations and check the result by verifying that
Answer to Problem 3P
Solution:
The matrix inverse is
Explanation of Solution
Given:
The system of equations,
And the LU decomposition is
Formula used:
(1) The forward substitution equations for L can be expressed as,
(2) The backward substitution equation for U can be expressed as,
Calculation:
Consider the given system of equations:
The matrix [A] is:
The lower and upper triangular matrix after decomposition are given as:
The first column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the first row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the first column of the inverse matrix as:
Similarly, the second column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the second row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the second column of the inverse matrix as:
Similarly, the third column of the inverse matrix can be determined by performing the forward substitution solution with a unit vector (with 1 in the third row) of right-hand-side vector.
The forward substitution equations for L can be expressed as,
Where,
Determine D by substituting L and B as shown below,
Solve for
Solve for
Solve for
Hence, the values obtained are
Solve with forward substitution of
This vector can be used as right-hand side vector of equation,
Solve the above matrix by back substitution, which gives the third column of the inverse matrix as:
Thus, the inverse matrix is:
Now, check the result obtained.
Hence, verified.
Want to see more full solutions like this?
Chapter 10 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
College Algebra (Collegiate Math)
Precalculus
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Intermediate Algebra (13th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- 16.3. Evaluate each of the following integrals where the path is an arbitrary contour between the limits of integrations (a). [1 ri/2 edz, (b). (b). La cos COS (2) d dz, (c). (z−3)³dz. 0arrow_forwardQ/ prove that:- If Vis a finite dimensional vector space, then this equivalence relation has only a single equivalence class.arrow_forward/ prove that :- It is easy to check that equivalence of norms is an e quivalence relation on the set of all norms on V.arrow_forward
- Q1: For, 0 <|z| < 1, evaluate the following integral where g is analyfunction inside and on the unit circle C: α) δε a) Sc 15 αξί b) Sc 9(5) -1/2 d. -2 1.'s integrale عناarrow_forwardQ4: State the Fundamental Theorem of Independent of Path and Morera's Theorem. Why can't apply these theorems to compute the integral contour. zdz, where C is closedarrow_forward18.11. If f(z) is analytic and |f(z)| ≤1/(1-2) in || < 1, show that |f'(0)| ≤ 4.arrow_forward
- SCAN GRAPHICS SECTION 9.3 | Percent 535 3. Dee Pinckney is married and filing jointly. She has an adjusted gross income of $58,120. The W-2 form shows the amount withheld as $7124. Find Dee's tax liability and determine her tax refund or balance due. 4. Jeremy Littlefield is single and has an adjusted gross income of $152,600. His W-2 form lists the amount withheld as $36,500. Find Jeremy's tax liability and determine his tax refund or balance due. 5. 6. Does a taxpayer in the 33% tax bracket pay 33% of his or her earnings in income tax? Explain your answer. In the table for single taxpayers, how were the figures $922.50 and $5156.25 arrived at? .3 hich percent is used. 00% is the same as multi- mber? 14. Credit Cards A credit card company offers an annual 2% cash-back rebate on all gasoline purchases. If a family spent $6200 on gasoline purchases over the course of a year, what was the family's rebate at the end of the year? Charitable t fractions, decimals, and 15. al Percent…arrow_forward1.5. Run Programs 1 and 2 with esin(x) replaced by (a) esin² (x) and (b) esin(x)| sin(x)|| and with uprime adjusted appropriately. What rates of convergence do you observe? Comment.arrow_forwardUse Taylor Series to derive the entries to the pentadiagonal and heptadiagonal (septadiagonal?) circulant matricesarrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning