![General, Organic, and Biological Chemistry - 4th edition](https://www.bartleby.com/isbn_cover_images/9781259883989/9781259883989_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
A balanced
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of
A radioactive process in which nucleus of an atom emits a particle (
![Check Mark](/static/check-mark.png)
Answer to Problem 39P
The complete nuclear reaction for decay of thorium-232 by a emission is represented as follows:
Explanation of Solution
To write a balanced
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having 2 protons thus atomic number of new nucleus will be obtained by subtracting 2 from atomic number of original nucleus
Mass number: The sum of mass number on both side must be equal in a nuclear equation. Since, the particle emitted during decay of thorium is having mass number 4. Thus, mass number of new nuclei will be obtained by subtracting 4 from atomic number of thorium as
The element having atomic number 88 is radium.
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(b)
Interpretation:
A balanced nuclear equation for decay of sodium-25 through β emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a beta particle (
![Check Mark](/static/check-mark.png)
Answer to Problem 39P
The complete nuclear reaction for decay of sodium-25 by β emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having -1 charge thus atomic number of new nucleus will be obtained by adding 1 to the atomic number of original nucleus
The element having atomic number 12 is magnesium.
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(c)
Interpretation:
A balanced nuclear equation for decay of xenon-118 through positron emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a positron (
![Check Mark](/static/check-mark.png)
Answer to Problem 39P
The complete nuclear reaction for decay of xenon by positron emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is
The element having atomic number 53 is Iodine(I).
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
(d)
Interpretation:
A balanced nuclear equation for decay of curium-243 through a emission should be predicted.
Concept Introduction:
The reactions involving formation of new nucleus with emission of some radiation along with it from an original nucleus are known as nuclear reactions.
To write a nuclear reaction the chemical equation for the reaction must be balanced that is the sum of atomic number and mass number on both the side should be equal.
A radioactive process in which nucleus of an atom emits a particle (
![Check Mark](/static/check-mark.png)
Answer to Problem 39P
The complete nuclear reaction for decay of curium through a emission is represented as follows:
Explanation of Solution
To write a balanced chemical reaction following steps should be followed which are given as follows:
- Write the incomplete reaction showing original nucleus with atomic number and mass number and the particle emitted on the left and right side respectively as follows:
- Determine atomic number and mass number or particle emitted on right side as follows:
- The chemical equation is completed using atomic number of new nuclei.
Atomic number: The sum of atomic number on both side must be equal in a chemical reaction. Since, particle emitted during the reaction is having 2 protons thus atomic number of new nucleus will be obtained by subtracting 2 from atomic number of original nucleus
Mass number: The sum of mass number on both side must be equal in a nuclear equation. Since, the particle emitted during decay of curium is having mass number 4. Thus, mass number of new nuclei will be obtained by subtracting 4 from atomic number of curium as
The element having atomic number 94 is Plutonium (Pu).
Now, write the element with its atomic number and mass number to complete the chemical equation as follows:
Want to see more full solutions like this?
Chapter 10 Solutions
General, Organic, and Biological Chemistry - 4th edition
- Nonearrow_forward3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). CN + En CNarrow_forward3) Propagation of uncertainty. Every measurement has uncertainty. In this problem, we'll evaluate the uncertainty in every step of a titration of potassium hydrogen phthalate (a common acid used in titrations, abbreviated KHP, formula CsH5KO4) with NaOH of an unknown concentration. The calculation that ultimately needs to be carried out is: concentration NaOH 1000 x mass KHP × purity KHP molar mass KHP x volume NaOH Measurements: a) You use a balance to weigh 0.3992 g of KHP. The uncertainty is ±0.15 mg (0.00015 g). b) You use a buret to slowly add NaOH to the KHP until it reaches the endpoint. It takes 18.73 mL of NaOH. The uncertainty of the burst is 0.03 mL.. c) The manufacturer states the purity of KHP is 100%±0.05%. d) Even though we don't think much about them, molar masses have uncertainty as well. The uncertainty comes from the distribution of isotopes, rather than random measurement error. The uncertainty in the elements composing KHP are: a. Carbon: b. Hydrogen: ±0.0008…arrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardHow would you use infrared spectroscopy to distinguish between the following pairs of constitutional isomers? (a) CH3C=CCH3 || and CH3CH2C=CH (b) CH3CCH=CHCH3 and CH3CCH2CH=CH2 Problem 12-41 The mass spectrum (a) and the infrared spectrum (b) of an unknown hydrocarbon are shown. Propose as many structures as you can. (a) 100 Relative abundance (%) 80 60 60 40 200 20 (b) 100 Transmittance (%) 10 20 20 80- 60- 40- 20 40 60 80 100 120 140 m/z 500 4000 3500 3000 2500 2000 1500 Wavenumber (cm-1) 1000arrow_forwardPropagation of uncertainty. You have a stock solution certified by the manufacturer to contain 150.0±0.03 µg SO42-/mL. You would like to dilute it by a factor of 100 to obtain 1.500 µg/mL. Calculate the uncertainty in the two methods of dilution below. Use the following uncertainty values for glassware: Glassware Uncertainty (assume glassware has been calibrated and treat the values below as random error) 1.00 mL volumetric pipet 0.01 mL 10.00 mL volumetric pipet 0.02 mL 100.00 mL volumetric flask 0.08 mL Transfer 10.00 mL with a volumetric pipet and dilute it to 100 mL with a volumetric flask. Then take 10.00 mL of the resulting solution and dilute it a second time with a 100 mL flask. 2. Transfer 1.00 mL with a volumetric pipet and dilute it to 100 mL with a volumetric flask.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)