Concept explainers
You have been hired as an expert witness in the case of a factory owner suing a demolition company. The particular case involves a smokestack at a factory being demolished. In order to save money, the factory owner wanted to move the smokestack to a nearby factory that was being built. The demolition company guaranteed to deliver the undamaged smokestack to the new factory by toppling the smokestack freely onto a huge cushioned platform lying on the ground. The then-horizontal smokestack would have been loaded onto a long truck rig for transport to the new factory. However, as the smokestack toppled, it broke apart at a point along its length. The factory owner is blaming the demolition company for the destruction of his smokestack. The demolition company is claiming that there was a defect in the smokestack and that is the reason for its destruction. What advice do you give the attorney who is handling the case on the side of the factory owner?
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Physics:f/sci.+engrs.,ap Ed.
- A 1520-N crate is to be held in place on a ramp that rises at 30.0° above the horizontal (see figure). The massless rope attached to the crate makes a 22.0° angle above the surface of the ramp. The coefficients of friction between the crate and the surface of the ramp are uk = 0.450 and us = 0.650. The pulley has no appreciable mass or friction. What is the MAXIMUM weight w that can be used to hold this crate stationary on the ramp? w = ? Crate 22.0 Ramp 30,0arrow_forwardA student is attempting to push his stalled car out of an intersection with his girlfriend at the wheel. The car and girlfriend has a combined mass of m = 999 kg. Unfortunately the hill has an incline of θ = 3.6 degrees with respect to the horizontal. The student can supply a force of F = 883 N for t = 24 s before tiring. What is the furthest the edge of the intersection can be d in meters from the stalled car in order to make it out in one push. Assume no rolling resistance from the car and that his girlfriend brakes to bring the car to a stop when he stops pushing. I got these hints: -Start with free body diagram. Use the relationship between impulse and momentum to find the final velocity of the car after he has pushed for time t.-Use a kinematic equation to relate the final velocity and time to the distance traveled.-What is his initial velocity?arrow_forwardWhile working on the roof of your house, you place your toolbox on the top of the roof. The roof is pitched such that it rises 6 inches for every 12 inches of horizontal run. As you turn to go down the ladder, you accidentally knock into the toolbox. The box slips down the roof and lands on the ground below approximately 3.5 ft from the house. If the weight of the toolbox is 5 lb, the roof height is 9 ft, and the total house height is 30 ft, what is the coefficient of kinetic friction between the toolbox and the roof?arrow_forward
- A small block sits at one end of a flat board that is 4.00 m long. The coefficients of friction between the block and the board are μs= 0.450 and μ = 0.400. The end of the board where the block sits is slowly raised until the angle the board makes with the horizontal is α0, and then the block starts to slide down the board. If the angle is kept equal to α0 as the block slides, what is the speed of the block when it reaches the bottom of the board? Express your answer with the appropriate units.arrow_forwardYou're standing at the top of a snow-covered hill, sloped at 20.0°. The coefficient of kinetic friction between your sled and the hill is 0.534. Unfortunately, there's a running stream just at the bottom of the hill, and you don't want to get wet. If you and your sled together have a mass of 87.0 kg, with what speed should you push off with to stop just before the stream, 77.0 m down the slope?arrow_forwardA box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.25 and the push imparts an initial speed of 3.9 m/sm/s ?arrow_forward
- A person steps horizontally off the roof of a single-story house that is 3.1 m high. When his feet hit theground below, he bends his knees such that his torso decelerates over a distance of 0.65 m before coming to astop. If the mass of his torso is 50 kg, what is the average net force exerted on his torso over this distance?arrow_forwardThe figure shows a container of mass m1 = 4.9 kg connected to a block of mass m2 by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 2.2 m/s? across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m2? (a) Number 10.78 Units N (b) Number i 1.1 Units kgarrow_forwardThe engines of a tanker broke down and the wind pushes the ship with a constant speed of 1.5 m / s straight towards a reef. When the boat is 500 m from the reef, the wind stops and the engineer manages to start the engines. The rudder is stuck, so the only option is to try to accelerate backwards. The mass of the ship and its cargo is 3.6 x 107 kg and the engines produce a net horizontal force of 8 x 104 N. The hull can withstand impacts at a speed of 0.2 m / s or less. The retarding force that the water exerts on the hull of the ship can be neglected. a) The equation of motion that corresponds to the horizontal component is? b)The acceleration of the ship is equal to? c) If the reef does not exist, the vessel, before stopping, travels what distance?arrow_forward
- The 2.0 kg block in the figure slides down a frictionless curved ramp, starting from rest at a height of h = 3.60 m. The block then slides d = 7.60 m on a rough horizontal surface before coming to rest. What is the coefficient of friction between the block and the horizontal surface? m = 2 kgarrow_forwardStudents are performing an experiment with the setup shown above, where a block of mass M sits on a horizontal table. The coefficient of kinetic friction between the block and the table is μk. The block is connected to a hanging object over a pulley. The pulley has negligible mass and friction. The string connecting the two is very light and does not stretch. The students add mass to the hanging object so that its mass is mm, where m<M, and the block-hanging object system is released from rest. The hanging object falls for a distance hh, at which point it collides with the ground and comes to rest. The block on the table keeps sliding and travels a total distance d before coming to rest. It does not reach the pulley, and d>h. Students derive the following equation for the relationship between the distance dd and the height h. (see image) (b) Whether or not this equation is correct, does it match the reasoning below? Justify your answer. if the experiment were repeated where the…arrow_forwardIn the very Dutch sport of Fierljeppen, athletes run up to a long pole and then use it to vault across a canal. At the very top of his arc, a 55 kg vaulter is moving at 2.5 m/s and is 5.1 m from the bottom end of the pole. What vertical force does the pole exert on the vaulter?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning