
An experiment was carried out to compare flow rates for four different types of nozzle.
a.
b. Analysis of the data using a statistical computer package yielded P-value = .029. At level .01, what would you conclude, and why?
a.

State and test the hypotheses at
Answer to Problem 35SE
The test hypotheses are:
Null hypothesis:
Alternative hypothesis:
The test reveals that the flow rates for the 4 types of nozzle are not significantly different.
Explanation of Solution
Given info:
An experiment conducted to compare the flow rates for 4 types of nozzle considered respective sample sizes 5, 6, 7, 6 with F statistic value
Calculation:
Let the average flow rates for the 4 types of nozzle be
The test hypotheses are:
Null hypothesis:
That is, the flow rates for 4 types of nozzle are equal.
Alternative hypothesis:
That is, the flow rates for at least 2 types of nozzle are not equal.
The test statistic value is found to be
Degrees of freedom (df):
The number of treatments is
The total number of observations is:
Thus, the total df is:
The error df for the one factor ANOVA or the denominator df is:
Thus, the degrees of freedom are 3, 20.
Level of significance:
The given level of significance is
Bounds of the P-value:
The Table A.9, the table for “Critical Values for F Distributions” shows that the F statistic value
Thus, the lower bound of the P-value is 0.01 and the upper bound of the P-value is 0.05.
Rejection rule:
If the
Conclusion:
Here, the P-value is greater than the level of significance.
That is,
Thus, the decision is “fail to reject the null hypothesis”.
Therefore, the data do not provide sufficient evidence to conclude that the flow rates vary for at least 2 types of nozzle.
That is, the flow rates for the 4 types of nozzle are not significantly different.
b.

Give the conclusion at level 0.01, if analysis of the yielded
Answer to Problem 35SE
It can be concluded that the flow rates for the 4 types of nozzle are not significantly different.
Explanation of Solution
Calculation:
Level of significance:
The given level of significance is
P-value:
From statistical computer package, the P-value is 0.029.
Rejection rule:
If the
Conclusion:
Here, the p-value greater than the level of significance.
That is,
Thus, the decision is “fail to reject the null hypothesis”.
Therefore, the data do not provide sufficient evidence to conclude that the flow rates vary for at least 2 types of nozzle.
That is, the flow rates for the 4 types of nozzle are not significantly different.
Want to see more full solutions like this?
Chapter 10 Solutions
Probability and Statistics for Engineering and the Sciences
- 2. [20] Let {X1,..., Xn} be a random sample from Ber(p), where p = (0, 1). Consider two estimators of the parameter p: 1 p=X_and_p= n+2 (x+1). For each of p and p, find the bias and MSE.arrow_forward1. [20] The joint PDF of RVs X and Y is given by xe-(z+y), r>0, y > 0, fx,y(x, y) = 0, otherwise. (a) Find P(0X≤1, 1arrow_forward4. [20] Let {X1,..., X} be a random sample from a continuous distribution with PDF f(x; 0) = { Axe 5 0, x > 0, otherwise. where > 0 is an unknown parameter. Let {x1,...,xn} be an observed sample. (a) Find the value of c in the PDF. (b) Find the likelihood function of 0. (c) Find the MLE, Ô, of 0. (d) Find the bias and MSE of 0.arrow_forward3. [20] Let {X1,..., Xn} be a random sample from a binomial distribution Bin(30, p), where p (0, 1) is unknown. Let {x1,...,xn} be an observed sample. (a) Find the likelihood function of p. (b) Find the MLE, p, of p. (c) Find the bias and MSE of p.arrow_forwardGiven the sample space: ΩΞ = {a,b,c,d,e,f} and events: {a,b,e,f} A = {a, b, c, d}, B = {c, d, e, f}, and C = {a, b, e, f} For parts a-c: determine the outcomes in each of the provided sets. Use proper set notation. a. (ACB) C (AN (BUC) C) U (AN (BUC)) AC UBC UCC b. C. d. If the outcomes in 2 are equally likely, calculate P(AN BNC).arrow_forwardSuppose a sample of O-rings was obtained and the wall thickness (in inches) of each was recorded. Use a normal probability plot to assess whether the sample data could have come from a population that is normally distributed. Click here to view the table of critical values for normal probability plots. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. 0.191 0.186 0.201 0.2005 0.203 0.210 0.234 0.248 0.260 0.273 0.281 0.290 0.305 0.310 0.308 0.311 Using the correlation coefficient of the normal probability plot, is it reasonable to conclude that the population is normally distributed? Select the correct choice below and fill in the answer boxes within your choice. (Round to three decimal places as needed.) ○ A. Yes. The correlation between the expected z-scores and the observed data, , exceeds the critical value, . Therefore, it is reasonable to conclude that the data come from a normal population. ○…arrow_forwardding question ypothesis at a=0.01 and at a = 37. Consider the following hypotheses: 20 Ho: μ=12 HA: μ12 Find the p-value for this hypothesis test based on the following sample information. a. x=11; s= 3.2; n = 36 b. x = 13; s=3.2; n = 36 C. c. d. x = 11; s= 2.8; n=36 x = 11; s= 2.8; n = 49arrow_forward13. A pharmaceutical company has developed a new drug for depression. There is a concern, however, that the drug also raises the blood pressure of its users. A researcher wants to conduct a test to validate this claim. Would the manager of the pharmaceutical company be more concerned about a Type I error or a Type II error? Explain.arrow_forwardFind the z score that corresponds to the given area 30% below z.arrow_forwardFind the following probability P(z<-.24)arrow_forward3. Explain why the following statements are not correct. a. "With my methodological approach, I can reduce the Type I error with the given sample information without changing the Type II error." b. "I have already decided how much of the Type I error I am going to allow. A bigger sample will not change either the Type I or Type II error." C. "I can reduce the Type II error by making it difficult to reject the null hypothesis." d. "By making it easy to reject the null hypothesis, I am reducing the Type I error."arrow_forwardGiven the following sample data values: 7, 12, 15, 9, 15, 13, 12, 10, 18,12 Find the following: a) Σ x= b) x² = c) x = n d) Median = e) Midrange x = (Enter a whole number) (Enter a whole number) (use one decimal place accuracy) (use one decimal place accuracy) (use one decimal place accuracy) f) the range= g) the variance, s² (Enter a whole number) f) Standard Deviation, s = (use one decimal place accuracy) Use the formula s² ·Σx² -(x)² n(n-1) nΣ x²-(x)² 2 Use the formula s = n(n-1) (use one decimal place accuracy)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
