
(a)
The value of convergence

Answer to Problem 34EP
Convergence
Explanation of Solution
Given:
Concept Used:
Convergence of the gap expression which is non-dimensional expression.
Also
Calculation:
As non-dimensional convergence of the gap
Where,
Putting
Conversion for convert angle from radians to degree
Comparing
As
Conclusion:
Hence, the convergence of the gap
(b)
The gauge pressure half way along with slipper-pad

Answer to Problem 34EP
The gauge pressure halfway along the slipper pad is 229.7 atm which is more than 200 atm. large value and this large force is act on small slipper pad bearing.
Explanation of Solution
Given:
Dynamic viscosity of the engine oil from table
Concept Used:
Expression of gauge pressure halfway along the slipper pad.
Calculation:
Now, the pressure function of distance 'x' the expression is given by
Where,
Now the gauge pressure halfway along slipper pad is given by,
Now, substituting the value in the givenexpression, we get,
Conclusion:
Hence, the gauge pressure halfway along the slipper pad is 229.7 atm.
As the pressure is more than 200 atm which is very large,large force acts on small slipper pad bearing.
(c)
The plotting of P* as a function of x*

Answer to Problem 34EP
The expression of 'P' is given by
Tabulating value of x from 0 to 1,
We get 'P's value and it plotted on a graph.
Explanation of Solution
Given:
Dynamic viscosity of the engine oil from table
Concept Used:
Expression of gauge pressure halfway along sleeper pad.
Calculation:
The non-dimensional equation for the pressure exerted by slipper pad and also distance equations is given by,
We know that,
Substituting p and x,L for x, and also
We get
Putting the value of from 0 to 1 we get the p's various values which is further plotted on the graph.
Conclusion:
Hence, we find out the expression of p in terms of x so that by various values of x (0 to 1), we get graph of p v/sx.
(d)
The pounds (lbf) of weight (load) this slipper pad bearing can support, if it is b = 6.0 in deep.

Answer to Problem 34EP
The load carrying capacity of slipper pad is 14460.345/bf.
Explanation of Solution
Given Information:
Concept used:
Expression of load carrying capacity of slipper pad
The load carrying capacity of slipper pad by math software is
But p gauge
Substituting all P gauge value in equation (a)
We get
But,
Conclusion:
From the expression
We get,
The load carrying capacity of the slipper pad is
Want to see more full solutions like this?
Chapter 10 Solutions
Fluid Mechanics: Fundamentals and Applications
- A mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forward
- My ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forwardplease solve this problem step by steparrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning



