PHYSICS F./SCI... W/MOD V.II W/KIT
4th Edition
ISBN: 9780134819884
Author: GIANCOLI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 31P
(I) Determine the moment of inertia of a 10.8-kg sphere of radius 0.648 m when the axis of rotation is through its center.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. List three places besides in springs where Hooke's law applies.
1. What is the spring constant of a spring that starts 10.0 cm long and extends to 11.4 cm with a 300 g mass hanging from it?
please help me solve all parts of this question from physics. thanks so much in advance! :)))
Chapter 10 Solutions
PHYSICS F./SCI... W/MOD V.II W/KIT
Ch. 10.1 - In Example 103, we found that the carousel, after...Ch. 10.4 - Two forces (FB = 20 N and FA = 30 N) are applied...Ch. 10.7 - In Figs. 1020f and g, the moments of inertia for a...Ch. 10.8 - Estimate the energy stored in the rotational...Ch. 10.9 - Return to the Chapter-Opening Question, p. 248,...Ch. 10.9 - Find the acceleration a of a yo-yo whose spindle...Ch. 10 - A bicycle odometer (which counts revolutions and...Ch. 10 - Suppose a disk rotates at constant angular...Ch. 10 - Could a nonrigid object be described by a single...Ch. 10 - Can a small force ever exert a greater torque than...
Ch. 10 - Why is it more difficult to do a sit-up with your...Ch. 10 - Mammals that depend on being able to run fast have...Ch. 10 - If the net force on a system is zero, is the net...Ch. 10 - Two inclines have the same height but make...Ch. 10 - Two spheres look identical and have the same mass....Ch. 10 - Two solid spheres simultaneously start rolling...Ch. 10 - Why do tightrope walkers (Fig. 1043) carry a long,...Ch. 10 - A sphere and a cylinder have the same radius and...Ch. 10 - The moment of inertia of this textbook would be...Ch. 10 - The moment of inertia of a rotating solid disk...Ch. 10 - Prob. 15QCh. 10 - (I) Express the following angles in radians: (a)...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - (I) The blades in a blender rotate at a rate of...Ch. 10 - (II) (a) A grinding wheel 0.35 m in diameter...Ch. 10 - (II) A bicycle with tires 68 cm in diameter...Ch. 10 - (II) Calculate the angular velocity of (a) the...Ch. 10 - (II) A rotating merry-go-round makes one complete...Ch. 10 - (II) What is the linear speed of a point (a) on...Ch. 10 - (II) Calculate the angular velocity of the Earth...Ch. 10 - Prob. 11PCh. 10 - (II) A 64-cm-diameter wheel accelerates uniformly...Ch. 10 - (II) In traveling to the Moon, astronauts aboard...Ch. 10 - (II) A turntable of radius R1 is turned by a...Ch. 10 - (II) The axle of a wheel is mounted on supports...Ch. 10 - (I) An automobile engine slows down from 3500 rpm...Ch. 10 - (I) A centrifuge accelerates uniformly front rest...Ch. 10 - (I) Pilots can be tested for the stresses of...Ch. 10 - (II) A cooling fan is turned off when it is...Ch. 10 - (II) Using calculus, derive the angular kinematic...Ch. 10 - (II) A small rubber wheel is used to drive a large...Ch. 10 - (II) The angle through which a rotating wheel has...Ch. 10 - (II) The angular acceleration of a wheel, as a...Ch. 10 - (I) A 62-kg person riding a bike puts all her...Ch. 10 - (I) Calculate the net torque about the axle of the...Ch. 10 - (II) A person exerts a horizontal force of 32 N on...Ch. 10 - (II) Two blocks, each of mass m, are attached to...Ch. 10 - (II) A wheel of diameter 27.0 cm is constrained to...Ch. 10 - (II) The bolts on the cylinder head of an engine...Ch. 10 - (II) Determine the net torque on the 2.0-m-long...Ch. 10 - (I) Determine the moment of inertia of a 10.8-kg...Ch. 10 - (I) Estimate the moment of inertia of a bicycle...Ch. 10 - (II) A potter is shaping a bowl on a potters wheel...Ch. 10 - (II) An oxygen molecule consists of two oxygen...Ch. 10 - (II) A softball player swings a bat, accelerating...Ch. 10 - (II) A grinding wheel is a uniform cylinder with a...Ch. 10 - (II) A small 650-g ball on the end of a thin,...Ch. 10 - (II) The forearm in Fig. 1052 accelerates a 3.6-kg...Ch. 10 - (II) Assume that a 1.00-kg ball is thrown solely...Ch. 10 - (II) Calculate the moment of inertia of the array...Ch. 10 - (II) A merry-go-round accelerates from rest to...Ch. 10 - (II) A 0.72-m-diameter solid sphere can be rotated...Ch. 10 - (II) Suppose the force FT in the cord hanging from...Ch. 10 - (II) A dad pushes tangentially on a small...Ch. 10 - Prob. 45PCh. 10 - (II) Two blocks are connected by a light string...Ch. 10 - (II) A helicopter rotor blade can be considered a...Ch. 10 - (II) A centrifuge rotor rotating at 10,300 rpm is...Ch. 10 - (II) When discussing moments of inertia,...Ch. 10 - Prob. 50PCh. 10 - (III) An Atwoods machine consists of two masses,...Ch. 10 - (III) A string passing over a pulley has a 3.80-kg...Ch. 10 - (III) A hammer thrower accelerates the hammer...Ch. 10 - (III) A thin rod of length l stands vertically on...Ch. 10 - (I) Use the parallel-axis theorem to show that the...Ch. 10 - (II) Determine the moment of inertia of a 19-kg...Ch. 10 - (II) Two uniform solid spheres of mass M and...Ch. 10 - (II) A ball of mass M and radius r1 on the end of...Ch. 10 - (II) A thin 7.0-kg wheel of radius 32 cm is...Ch. 10 - (III) Derive the formula for the moment of inertia...Ch. 10 - (III) (a) Derive the formula given in Fig. 1020h...Ch. 10 - (I) An automobile engine develops a torque of 255m...Ch. 10 - (I) A centrifuge rotor has a moment of inertia of...Ch. 10 - (II) A rotating uniform cylindrical platform of...Ch. 10 - (II) A merry-go-round has a mass of 1640 kg and a...Ch. 10 - (II) A Uniform thin rod of length l and mass M is...Ch. 10 - (II) Two masses, mA = 35.0 kg and mB = 38.0 kg,...Ch. 10 - (III) A 4.00-kg mass and a 3.00-kg mass are...Ch. 10 - (III) A 2.30-m-long pole is balanced vertically on...Ch. 10 - (I) Calculate the translational speed of a...Ch. 10 - (I) A bowling ball of mass 7.3kg and radius 9.0 cm...Ch. 10 - (I) Estimate the kinetic energy of the Earth with...Ch. 10 - (II) A sphere of radius r0 = 24.5 cm and mass m =...Ch. 10 - (II) A narrow but solid spool of thread has radius...Ch. 10 - (II) A ball of radius r0 rolls on the inside of a...Ch. 10 - (II) A solid rubber ball rests on the floor of a...Ch. 10 - (II) A thin, hollow 0.545-kg section of pipe of...Ch. 10 - (II) In Example 1020, (a) how far has the ball...Ch. 10 - (III) The 1100-kg mass of a car includes four...Ch. 10 - (III) A wheel with rotational inertia I=12MR2...Ch. 10 - (III) A small sphere of radius r0 = 1.5 cm rolls...Ch. 10 - (I) A rolling hall slows down because the normal...Ch. 10 - A large spool of rope rolls on the ground with the...Ch. 10 - On a 12.0-cm-diameter audio compact disc (CD),...Ch. 10 - (a) A yo-yo is made of two solid cylindrical...Ch. 10 - A cyclist accelerates from rest at a rate of l.00...Ch. 10 - Suppose David puts a 0.50-kg rock into a sling of...Ch. 10 - A 1.4-kg grindstone in the shape of a uniform...Ch. 10 - Bicycle gears: (a) How is the angular velocity R...Ch. 10 - Figure 1065 illustrates an H2O molecule. The O H...Ch. 10 - One possibility for a low-pollution automobile is...Ch. 10 - A hollow cylinder (hoop) is rolling on a...Ch. 10 - Prob. 93GPCh. 10 - A marble of mass m and radius r rolls along the...Ch. 10 - The density (mass per unit length) of a thin rod...Ch. 10 - If a billiard ball is hit in just the right way by...Ch. 10 - If the coefficient of static friction between...Ch. 10 - A cord connected at one end to a block which can...Ch. 10 - The radius of the roll of paper shown in Fig. 1070...Ch. 10 - A solid uniform disk of mass 21.0 kg and radius...Ch. 10 - When bicycle and motorcycle riders pop a wheelie,...Ch. 10 - A crucial part of a piece of machinery starts as a...Ch. 10 - A thin uniform stick of mass M and length l is...Ch. 10 - (a) For the yo-yo-like cylinder of Example 1019,...Ch. 10 - (II) Determine the torque produced about the...Ch. 10 - (II) Use the expression that was derived in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
40. A 5.0-rn-diameter merry-go-round is initially turning with a
4.0 s period. It slows down and stops in 20 s...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
7. Which bones form via intramembranous ossification?
a. Irregular bones
b. Certain flat bones
c. Long bones
d....
Human Anatomy & Physiology (2nd Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Answer the following questions for each compound: a. How many signals are in its 13C NMR spectrum? b. Which sig...
Organic Chemistry (8th Edition)
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A fluid with density 263 kg/m3 flows through a pipe of varying diameter and height. At location 1 the flow speed is 13.5 m/s and the diameter of the pipe is 7.4 cm down to location 2 the pipe diameter is 16.9 cm. Location 1 is 6.3 meters higher than location 2. What is the difference in pressure P2 - P1? Using units in Pascals and use g = 9.81 m/s2.arrow_forwardThe kitchen had a temperature 46 degrees Fahrenheit and was converted it to Kelvin. What is the correct number for this temperature (46 F) on the Kelvin scale?arrow_forwardWater is traveling at a speed of 0.65 m/s through a pipe with a cross-section radius of 0.23 meters. The water enters a section of pipe that has a smaller radius, only 0.11 meters. What is the speed of the water traveling in this narrower section of pipe?arrow_forward
- A particular water pipe has a radius of 0.28 meters. If the pipe is completely filled with water, moving with average velocity 0.45 m/s, what is the flow rate of water through the pipe with units of cubic meters of water per second?arrow_forwardWater is flowing through a horizontal pipe with two segments. In one segment, the water flows at a speed v1 = 4.52 m/s. In the second segment the speed of the water is v2 = 2.38 m/s. Based on Bernoulli's Principle, what is the difference in pressure (P2 - P1) between the two segments? Assume that the density of the water is 997 kg/m3 and give your answer as the number of Pascals (i.e. N/m2).arrow_forwardWater from the faucet is supplied to the hose at a rate of 0.00057 m3/s. At what speed (number of meters per second) does the water exit the nozzle if the cross sectional area of the narrow nozzle is 2.1 x 10-6 m2?arrow_forward
- Jason Fruits/Indiana University Research Communications Silver/ silver oxide Zinc zinc/oxidearrow_forwardCar P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. At instant 3, cars P and Q are adjacent to one another (i.e., they have the same position). In the reference frame o f the road, at instant 3 i s the speed o f car Q greater than, less than, or equal to the speed of car P? Explain.arrow_forwardCar P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals.arrow_forward
- Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. Sketch and label a vector diagram illustrating the Galilean transformation of velocities that relates velocity of car P relative to the road, velocity of car Q relative to road, and velocity of car Q relative to car P at instant 3. In the frame of car P, at instant 3 is car Q moving to the west, moving to the east, or at rest? Explain.arrow_forwardJust 5 and 6 don't mind 7arrow_forwardIn an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY