Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 30P
(II) Determine the net torque on the 2.0-m-long uniform beam shown in Fig. 10–50. Calculate about (a) point C, the CM, and (b) point P at one end.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Lab Assignment #3
Vectors
2. Determine the magnitude and sense of the forces in cables A and B.
30°
30°
300KN
3. Determine the forces in members A and B of the following structure.
30°
B
200kN
Name:
TA:
4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N,
F₂-800N, F, 900N, 0,-30°, 62-50°
30°
50°
F₁ = 500N
= 900N
F₂ = 800N
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 10.1 - In Example 103, we found that the carousel, after...Ch. 10.4 - Two forces (FB = 20 N and FA = 30 N) are applied...Ch. 10.7 - In Figs. 1020f and g, the moments of inertia for a...Ch. 10.8 - Estimate the energy stored in the rotational...Ch. 10.9 - Return to the Chapter-Opening Question, p. 248,...Ch. 10.9 - Find the acceleration a of a yo-yo whose spindle...Ch. 10 - A bicycle odometer (which counts revolutions and...Ch. 10 - Suppose a disk rotates at constant angular...Ch. 10 - Could a nonrigid object be described by a single...Ch. 10 - Can a small force ever exert a greater torque than...
Ch. 10 - Why is it more difficult to do a sit-up with your...Ch. 10 - Mammals that depend on being able to run fast have...Ch. 10 - If the net force on a system is zero, is the net...Ch. 10 - Two inclines have the same height but make...Ch. 10 - Two spheres look identical and have the same mass....Ch. 10 - Two solid spheres simultaneously start rolling...Ch. 10 - Why do tightrope walkers (Fig. 1043) carry a long,...Ch. 10 - A sphere and a cylinder have the same radius and...Ch. 10 - The moment of inertia of this textbook would be...Ch. 10 - The moment of inertia of a rotating solid disk...Ch. 10 - Prob. 15QCh. 10 - (I) Express the following angles in radians: (a)...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - (I) The blades in a blender rotate at a rate of...Ch. 10 - (II) (a) A grinding wheel 0.35 m in diameter...Ch. 10 - (II) A bicycle with tires 68 cm in diameter...Ch. 10 - (II) Calculate the angular velocity of (a) the...Ch. 10 - (II) A rotating merry-go-round makes one complete...Ch. 10 - (II) What is the linear speed of a point (a) on...Ch. 10 - (II) Calculate the angular velocity of the Earth...Ch. 10 - Prob. 11PCh. 10 - (II) A 64-cm-diameter wheel accelerates uniformly...Ch. 10 - (II) In traveling to the Moon, astronauts aboard...Ch. 10 - (II) A turntable of radius R1 is turned by a...Ch. 10 - (II) The axle of a wheel is mounted on supports...Ch. 10 - (I) An automobile engine slows down from 3500 rpm...Ch. 10 - (I) A centrifuge accelerates uniformly front rest...Ch. 10 - (I) Pilots can be tested for the stresses of...Ch. 10 - (II) A cooling fan is turned off when it is...Ch. 10 - (II) Using calculus, derive the angular kinematic...Ch. 10 - (II) A small rubber wheel is used to drive a large...Ch. 10 - (II) The angle through which a rotating wheel has...Ch. 10 - (II) The angular acceleration of a wheel, as a...Ch. 10 - (I) A 62-kg person riding a bike puts all her...Ch. 10 - (I) Calculate the net torque about the axle of the...Ch. 10 - (II) A person exerts a horizontal force of 32 N on...Ch. 10 - (II) Two blocks, each of mass m, are attached to...Ch. 10 - (II) A wheel of diameter 27.0 cm is constrained to...Ch. 10 - (II) The bolts on the cylinder head of an engine...Ch. 10 - (II) Determine the net torque on the 2.0-m-long...Ch. 10 - (I) Determine the moment of inertia of a 10.8-kg...Ch. 10 - (I) Estimate the moment of inertia of a bicycle...Ch. 10 - (II) A potter is shaping a bowl on a potters wheel...Ch. 10 - (II) An oxygen molecule consists of two oxygen...Ch. 10 - (II) A softball player swings a bat, accelerating...Ch. 10 - (II) A grinding wheel is a uniform cylinder with a...Ch. 10 - (II) A small 650-g ball on the end of a thin,...Ch. 10 - (II) The forearm in Fig. 1052 accelerates a 3.6-kg...Ch. 10 - (II) Assume that a 1.00-kg ball is thrown solely...Ch. 10 - (II) Calculate the moment of inertia of the array...Ch. 10 - (II) A merry-go-round accelerates from rest to...Ch. 10 - (II) A 0.72-m-diameter solid sphere can be rotated...Ch. 10 - (II) Suppose the force FT in the cord hanging from...Ch. 10 - (II) A dad pushes tangentially on a small...Ch. 10 - Prob. 45PCh. 10 - (II) Two blocks are connected by a light string...Ch. 10 - (II) A helicopter rotor blade can be considered a...Ch. 10 - (II) A centrifuge rotor rotating at 10,300 rpm is...Ch. 10 - (II) When discussing moments of inertia,...Ch. 10 - Prob. 50PCh. 10 - (III) An Atwoods machine consists of two masses,...Ch. 10 - (III) A string passing over a pulley has a 3.80-kg...Ch. 10 - (III) A hammer thrower accelerates the hammer...Ch. 10 - (III) A thin rod of length l stands vertically on...Ch. 10 - (I) Use the parallel-axis theorem to show that the...Ch. 10 - (II) Determine the moment of inertia of a 19-kg...Ch. 10 - (II) Two uniform solid spheres of mass M and...Ch. 10 - (II) A ball of mass M and radius r1 on the end of...Ch. 10 - (II) A thin 7.0-kg wheel of radius 32 cm is...Ch. 10 - (III) Derive the formula for the moment of inertia...Ch. 10 - (III) (a) Derive the formula given in Fig. 1020h...Ch. 10 - (I) An automobile engine develops a torque of 255m...Ch. 10 - (I) A centrifuge rotor has a moment of inertia of...Ch. 10 - (II) A rotating uniform cylindrical platform of...Ch. 10 - (II) A merry-go-round has a mass of 1640 kg and a...Ch. 10 - (II) A Uniform thin rod of length l and mass M is...Ch. 10 - (II) Two masses, mA = 35.0 kg and mB = 38.0 kg,...Ch. 10 - (III) A 4.00-kg mass and a 3.00-kg mass are...Ch. 10 - (III) A 2.30-m-long pole is balanced vertically on...Ch. 10 - (I) Calculate the translational speed of a...Ch. 10 - (I) A bowling ball of mass 7.3kg and radius 9.0 cm...Ch. 10 - (I) Estimate the kinetic energy of the Earth with...Ch. 10 - (II) A sphere of radius r0 = 24.5 cm and mass m =...Ch. 10 - (II) A narrow but solid spool of thread has radius...Ch. 10 - (II) A ball of radius r0 rolls on the inside of a...Ch. 10 - (II) A solid rubber ball rests on the floor of a...Ch. 10 - (II) A thin, hollow 0.545-kg section of pipe of...Ch. 10 - (II) In Example 1020, (a) how far has the ball...Ch. 10 - (III) The 1100-kg mass of a car includes four...Ch. 10 - (III) A wheel with rotational inertia I=12MR2...Ch. 10 - (III) A small sphere of radius r0 = 1.5 cm rolls...Ch. 10 - (I) A rolling hall slows down because the normal...Ch. 10 - A large spool of rope rolls on the ground with the...Ch. 10 - On a 12.0-cm-diameter audio compact disc (CD),...Ch. 10 - (a) A yo-yo is made of two solid cylindrical...Ch. 10 - A cyclist accelerates from rest at a rate of l.00...Ch. 10 - Suppose David puts a 0.50-kg rock into a sling of...Ch. 10 - A 1.4-kg grindstone in the shape of a uniform...Ch. 10 - Bicycle gears: (a) How is the angular velocity R...Ch. 10 - Figure 1065 illustrates an H2O molecule. The O H...Ch. 10 - One possibility for a low-pollution automobile is...Ch. 10 - A hollow cylinder (hoop) is rolling on a...Ch. 10 - Prob. 93GPCh. 10 - A marble of mass m and radius r rolls along the...Ch. 10 - The density (mass per unit length) of a thin rod...Ch. 10 - If a billiard ball is hit in just the right way by...Ch. 10 - If the coefficient of static friction between...Ch. 10 - A cord connected at one end to a block which can...Ch. 10 - The radius of the roll of paper shown in Fig. 1070...Ch. 10 - A solid uniform disk of mass 21.0 kg and radius...Ch. 10 - When bicycle and motorcycle riders pop a wheelie,...Ch. 10 - A crucial part of a piece of machinery starts as a...Ch. 10 - A thin uniform stick of mass M and length l is...Ch. 10 - (a) For the yo-yo-like cylinder of Example 1019,...Ch. 10 - (II) Determine the torque produced about the...Ch. 10 - (II) Use the expression that was derived in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
For the following fragment of DNA, determine the number of hydrogen bonds and the number of phosphodiester bond...
Genetic Analysis: An Integrated Approach (3rd Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. What would you be most likely to find ...
Cosmic Perspective Fundamentals
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Lab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forwardNo chatgpt pls will upvotearrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY