Concept explainers
(a)
The distance between the center of mass of the Earth-Moon system and the center of Earth using the expression,
(a)
Answer to Problem 21Q
Solution:
Explanation of Solution
Introduction:
The distance between the center of mass of a two worlds system and the center of world 1
Explanation:
Recall the expression for the distance between the center of mass of the Earth-Moon system and the center of Earth, considering Earth as world 1 and the Moon as world 2, and their respective centers being an average distance apart from each other as:
Substitute
Conclusion:
Hence, the distance between the center of mass of the Earth-Moon system and the center of Earth is
(b)
Whether the center of mass of the Earth-Moon system is beneath the earth’s surface and if yes, then also determine the depth of it from the surface of Earth.
(b)
Answer to Problem 21Q
Solution:
The center of mass of the Earth-Moon system is within the Earth, at a distance of about
Explanation of Solution
Introduction:
The center of mass of the Earth-Moon system lies on the imaginary line joining the centers of both the worlds, and since the mass of Earth is much more than that of the Moon, the center of mass will lie closer to Earth’s center and beneath its surface.
Therefore, the distance between the center of mass of the system and the Earth’s surface is:
Here,
Explanation:
Refer to the sub-part (a) of the problem and compare the value of the distance of the center of mass of the Earth-Moon system with the standard value of Earth’s radius. It is observed that the radius of Earth is much larger than the distance of the center of mass of the system. This can be represented as,
Hence, the center of mass of the system will lie within the Earth, below its surface.
Now, recall the expression for the distance between the center of mass of the system and Earth’s surface as:
Substitute
Conclusion:
Hence, the center of mass of the Earth-Moon system lies beneath the surface of Earth at a distance of about
(c)
The distance between the center of the Sun and the center of mass of the Sun-Earth system, if the first world is the Sun and the second world is Earth using the expression,
(c)
Answer to Problem 21Q
Solution:
Distance of the center of mass of the Sun-Earth system is around
Explanation of Solution
Introduction:
The distance between the center of mass of a two worlds system and the center of world 1
Explanation:
Recall the expression for the distance between the center of mass of the Sun-Earth system and the center of the Sun, considering the Sun as world 1 and Earth as world 2:
Substitute
Compare the value calculated above with the standard value of the radius of the Sun, which is
It is observed that the value of the distance between the center of mass of the system and the center of the Sun is almost
Therefore, it can be safely assumed that Earth revolves around the center of the Sun.
Conclusion:
Hence, the distance between the center of mass of the Sun-Earth system and the center of the Sun is around
Therefore, it is safe to assume that Earth revolves around the Sun’s center.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning