Concept explainers
You have just bought a new bicycle. On your first riding trip, it seems that the hike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than −0.02 N · m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that are projected straight upward, as shown in Figure P10.21. Ah-ha! Here is your torque-measuring method! The upward-projected drops leave the rim of the wheel at the same level as the axle. You measure the height to which a drop rises from the level of the axle: h1 = 54.0 cm. The wet spot on the tire makes one revolution and another drop is projected upward. You measure its highest point: h2 = 51.0 cm. You measure the radius of the wheel: r = 0.381 m. Finally, you take the wheel off the bike and find its mass: m = 0.850 kg. Because most of the mass of the wheel is at the tire, you model the wheel as a hoop. What do you tell the technician when you call back?
Figure P10.21
Trending nowThis is a popular solution!
Chapter 10 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- The uniform thin rod in Figure P8.47 has mass M = 3.50 kg and length L = 1.00 m and is free to rotate on a friction less pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of (a) the rods angular acceleration, (b) the tangential acceleration of the rods center of mass, and (c) the tangential acceleration of the rods free end. Figure P8.47 Problems 47 and 86.arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forward
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardFriction in an old clock causes it to lose 1 minute per hour. Assume the angular acceleration is constant, the positive z axis points out of the face of the clock, and at the beginning of the hour it was at its ideal angular speed. Find the angular acceleration of the minute hand (long hand) and its angular velocity at the end of the hour.arrow_forwardThe system shown in Figure P13.18 consisting of four particles connected by massless, rigid rods is rotating around the x axis with an angular speed of 2.50 rad/s. The particle masses are m1 = 1.00 kg, m2 = 4.00 kg, m3 = 2.00 kg, and m4 = 3.00 kg. a. What is the rotational inertia of the system around the x axis? b. Using Kr=12I2 (Eq. 13.10), what is the total rotational kinetic energy of the system? c. What is the tangential speed of each of the four particles? d. Considering the system as four particles in motion and using K=i12mvi2, what is the total kinetic energy of the system? How does this value compare with the result obtained in part (b)? FIGURE P13.18arrow_forward
- A centrifuge used for training astronauts rotating at 0.810 rad/s is spun up to 1.81 rad/s with an angular acceleration of 0.050 rad/s2. a. What is the magnitude of the angular displacement that the centrifuge rotates through during this increase in speed? b. If the initial and final speeds of the centrifuge were tripled and the angular acceleration remained at 0.050 rad/s2, what would be the factor by which the result in part (a) would change?arrow_forwardA rotating objects angular position is given by (t) = (1.54t2 7.65t + 2.75) rad, where t is measured in seconds. Find a. the objects angular speed when t = 3.50 s and b. the magnitude of the angular acceleration when t = 3.50 s.arrow_forwardIf the system shown in Figure P8.37 is set in rotation about each of the axes mentioned in Problem 37, find the torque that will produce an angular acceleration of 1.50 rad/s2 in each case. Figure P8.37 Problems 37 and 38.arrow_forward
- Why is the following situation impossible? Starting from rest, a disk rotates around a fixed axis through an angle of 50.0 rad in a time interval of 10.0 s. The angular acceleration of the disk is constant during the entire motion, and its final angular speed is 8.00 rad/s.arrow_forwardThe propeller of an aircraft accelerates from rest with an angular acceleration = 4t + 6, where is in rad/s2 and t isin seconds. What is the angle in radians through which thepropeller rotates from t = 1.00 s to t = 6.00 s?arrow_forwardSuppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth during this period? (c) What force tangent to Earth at its equator would produce this torque?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning