EBK COLLEGE PHYSICS, VOLUME 1
EBK COLLEGE PHYSICS, VOLUME 1
11th Edition
ISBN: 8220103599986
Author: Vuille
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 21P

A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0°C. It is completely filled with turpentine at 20.0°C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0°C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0°C? (c) If the combination with this amount of turpentine is then cooled back to 20.0°C, how far below the cylinder’s rim does the turpentine’s surface recede?

(a)

Expert Solution
Check Mark
To determine
The volume of turpentine that has overflowed.

Answer to Problem 21P

The volume of turpentine that has overflowed is 99 mL.

Explanation of Solution

Given Info: The length of the hollow cylinder (l) is 20.0 cm. The capacity of the cylinder ( V0 ) is 2.000 L at T1=20.0οC . The temperature is changed to T2=80.0οC . The co-efficient of volume expansion of turpentine is βT=9.0×104/οC . The co-efficient of volume expansion of aluminum is βAl=72×106/οC .

Formula to calculate the volume of turpentine that has overflowed is,

Vof=ΔVTΔVAl       (I)

  • ΔVT is the change in volume of turpentine.
  • ΔVAl is the change in volume of Aluminum.

Formula to calculate the change in volume of turpentine is,

ΔVT=V0βT(T2T1)       (II)

Formula to calculate the change in volume of aluminum is,

ΔVAl=V0βAl(T2T1)       (III)

Substitute Equations (II) and (III) in (I).

Vof=V0(T2T1)(βTβAl)

Substitute 2.000 L for V0 , 20.0οC for T1 , 80.0οC for T2 , 9.0×104/οC for βT and 72×106/οC for βAl in the above expression to get Vof .

Vof=(2.000L)[(80.0οC)(20.0οC)][(9.0×104/οC)(72×106/οC)]=99mL

Conclusion:

The volume of turpentine that has overflowed is 99 mL.

(b)

Expert Solution
Check Mark
To determine
The volume of turpentine remaining.

Answer to Problem 21P

The volume of turpentine remaining is 2.009 L.

Explanation of Solution

Given Info: The length of the hollow cylinder (l) is 20.0 cm. The capacity of the cylinder ( V0 ) is 2.000 L at T1=20.0οC . The temperature is changed to T2=80.0οC . The co-efficient of volume expansion of turpentine is βT=9.0×104/οC . The co-efficient of volume expansion of aluminum is βAl=72×106/οC .

Volume of turpentine remaining ( Vr ) is equal to the volume of aluminum cylinder. Therefore, the formula to calculate the remaining volume is,

Vr=V0[1+βAl(T2T1)]

Substitute 2.000 L for V0 , 20.0οC for T1 , 80.0οC for T2 and 72×106/οC for βAl in the above expression to get Vr

Vr=(2.000L)[1+(72×106/οC)[(80.0οC)(20.0οC)]]=2.009L

Conclusion:

The volume of turpentine remaining is 2.009 L.

(c)

Expert Solution
Check Mark
To determine
The distance between the rim and the surface of turpentine (h).

Answer to Problem 21P

The distance between the rim and the surface of turpentine (h) is 1 cm.

Explanation of Solution

Given Info: The length of the hollow cylinder (l) is 20.0 cm. The capacity of the cylinder ( V0 ) is 2.000 L at T1=20.0οC . The temperature is changed to T2=80.0οC . The co-efficient of volume expansion of turpentine is βT=9.0×104/οC . The co-efficient of volume expansion of aluminum is βAl=72×106/οC .

Formula to calculate the volume of turpentine remaining at 20.0οC is,

Vr'=Vr[1+βT(T1T2)]       (IV)

The fraction of empty volume is,

f=1Vr'V0       (V)

The fraction of empty volume is also equal to the ratio of the distance between the rim and the surface of turpentine and the length of the cylinder.

f=hl       (VI)

From Equations (IV), (V) and (VI),

h=l{1Vr[1+βT(T1T2)]V0}

Substitute 20.0 cm for l, 2.009 L for Vr , 2.000 L for V0 , 20.0οC for T1 , 80.0οC for T2 and 9.0×104/οC for βT in the above expression to get h.

h=(20.0cm){1(2.009L)[1+(9.0×104/οC)[(20.0οC)(80.0οC)]]2.000L}=1cm

Conclusion:

The distance between the rim and the surface of turpentine (h) is 1 cm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0°C. It is completely filled with turpentine at 20.0°C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0°C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0°C? (c) If the combination with this amount of turpentine is then cooled back to 20.0°C, how far below the cylinder’s rim does the turpentine’s surface recede?
A Styrofoam ice box has a total area of 0.950 m² and walls with an average thickness of 2.50 cm. The box contains ice, water, and canned beverages at 0°C. The inside of the box is kept cold by melting ice. How much ice melts in one day if the ice box is kept in the trunk of a car at 35.0°C?
The mass of a hot-air balloon and its cargo (not including the air inside) is 180 kg. The air outside is at 10.0°C and 101 kPa. The volume of the balloon is 520 m3. To what temperature must the air in the balloon be warmed before the balloon will lift off? (Air density at 10.0°C is 1.244 kg/m3.) K

Chapter 10 Solutions

EBK COLLEGE PHYSICS, VOLUME 1

Ch. 10 - Objects deep beneath the surface of the ocean are...Ch. 10 - A container filled with an ideal gas is connected...Ch. 10 - Why do vapor bubbles in a pot of boiling water get...Ch. 10 - Markings to indicate length are placed on a steel...Ch. 10 - Figure CQ10.9 shows Maxwell speed distributions...Ch. 10 - The air we breathe is largely composed of nitrogen...Ch. 10 - Metal lids on glass jars can often be loosened by...Ch. 10 - Suppose the volume of an ideal gas is doubled...Ch. 10 - An automobile radiator is filled to the brim with...Ch. 10 - Figure CQ10.14 shows a metal washer being heated...Ch. 10 - Prob. 1PCh. 10 - The pressure in a constant-volume gas thermometer...Ch. 10 - Prob. 3PCh. 10 - Death Valley holds the record for the highest...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - A persons body temperature is 101.6F, indicating a...Ch. 10 - The temperature difference between the inside and...Ch. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - A grandfather clock is controlled by a swinging...Ch. 10 - A pair of eyeglass frames are made of epoxy...Ch. 10 - A spherical steel ball bearing has a diameter of...Ch. 10 - A brass ring of diameter 10.00 cm at 20.0C is...Ch. 10 - A wire is 25.0 m long at 2.00C and is 1.19 cm...Ch. 10 - The density of lead is 1.13 104 kg/m3 at 20.0C....Ch. 10 - The Golden Gate Bridge in San Francisco has a main...Ch. 10 - An underground gasoline tank can hold 1.00 103...Ch. 10 - Show that the coefficient of volume expansion, ,...Ch. 10 - A hollow aluminum cylinder 20.0 cm deep has an...Ch. 10 - A construction worker uses a steel tape to measure...Ch. 10 - The hand in Figure P10.23 is stainless steel...Ch. 10 - The Trans-Alaskan pipeline is 1 300 km long,...Ch. 10 - The average coefficient of volume expansion for...Ch. 10 - The density or gasoline is 7.30 102 kg/m3 at 0C....Ch. 10 - Figure P10.27 shows a circular steel casting with...Ch. 10 - The concrete sections of a certain superhighway...Ch. 10 - A sample of pure copper has a mass of 12.5 g....Ch. 10 - Prob. 30PCh. 10 - One mole of oxygen gas is at a pressure of 6.00...Ch. 10 - A container holds 0.500 m3 of oxygen at an...Ch. 10 - (a) An ideal gas occupies a volume of 1.0 cm3 at...Ch. 10 - An automobile tire is inflated with air originally...Ch. 10 - Prob. 35PCh. 10 - Gas is contained in an 8.00-L vessel at a...Ch. 10 - Prob. 37PCh. 10 - The density of helium gas at 0C is 0 = 0.179...Ch. 10 - An air bubble has a volume of 1.50 cm3 when it is...Ch. 10 - During inhalation, a persons diaphragm and...Ch. 10 - What is the average kinetic energy of a molecule...Ch. 10 - Prob. 42PCh. 10 - Three moles of an argon gas are at a temperature...Ch. 10 - A sealed cubical container 20.0 cm on a side...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - A 7.00-L vessel contains 3.50 moles of ideal gas...Ch. 10 - Prob. 49PCh. 10 - Prob. 50PCh. 10 - Inside the wall of a house, an L-shaped section of...Ch. 10 - The active element of a certain laser is made of a...Ch. 10 - A popular brand of cola contains 6.50 g of carbon...Ch. 10 - Prob. 54APCh. 10 - Prob. 55APCh. 10 - A 1.5-m-long glass tube that is closed at one end...Ch. 10 - Prob. 57APCh. 10 - A vertical cylinder of cross-sectional area A is...Ch. 10 - Prob. 59APCh. 10 - A 20.0-L tank of carbon dioxide gas (CO2) is at a...Ch. 10 - A liquid with a coefficient of volume expansion of...Ch. 10 - Before beginning a long trip on a hot day, a...Ch. 10 - Two concrete spans of a 250-m-long bridge are...Ch. 10 - An expandable cylinder has its top connected to a...Ch. 10 - A bimetallic strip of length L is made of two...Ch. 10 - A 250-m-long bridge is improperly designed so that...Ch. 10 - Prob. 67APCh. 10 - Two small containers, each with a volume of 1.00 ...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY