For Exercises 1-4, solve the system of equations using
- The substitution method or the addition method (see Sections 9. 1 and 9.2).
- Gaussian elimination (see Section 10.1)
- Gauss-Jordan elimination (see Section 10.1).
- The inverse of the coefficient matrix (see Section 10.4).
- Cramer's rule (see Section 10.5).
1.
a.
To solve: The system of equations using substitution method.
Answer to Problem 1PRE
The required solution of the system of equations by substitution method is
Explanation of Solution
Given:
The given system of equationsis
Method Used:
The steps used in substitution method are:
Step1: Choose one of the two equations and solve it for one of the two variables. (Make sure avoiding fractions, if possible.)
Step2: Substitute the value of variable of step 1 into the equation that is not used in step 1 and then solve resulted linear equation for one variable.
Step3: Substitute the result of step 2 into the expression obtained in step 1 to find the value of the other variable.
Calculations:
The value of variable x from equation (1) is
Now substitute value of y back into the first equation
Thus
Conclusion:
The solution of given system of equations by substitution method is
b.
To solve: The system of equations using Gaussian elimination method.
Answer to Problem 1PRE
The solution of the system of equations using Gaussian elimination method is
Explanation of Solution
Given:
The system of equations in part (a)
Method used:
The steps used in Gauss elimination are:
Step 1: Write augmented matrix for the system of equations
Step 2: Using elementary operations write augmented matrix in “row echelon form”
Step 3: Using back substitution solve the resulted set of equations
Calculations:
The given system of equations can be written as:
The coefficient matrix and the augmented matrix for the given system of equations are
Thus, value of
The solution of system of equations is
Conclusion:The solution of the system of equations using Gaussian elimination method is
c.
To solve: The system of equations using Gauss- Jordan elimination method.
Answer to Problem 1PRE
The solution of the system of equations using Gauss- Jordan elimination method is
Explanation of Solution
Given:
The system of equations in part (a)
Method used:
In Gauss- Jordan elimination method a “reduced row Echelon matrix” is obtained using appropriate elementary row operations as given below:
Step 1: Choosing the leftmost nonzero column and using row operation get a 1 at the top.
Step2: Use multiples of the rows containing 1 from step 1, and get zeros in all remaining places in the column containing this 1.
Step 3: Repeat step 1 with the sub-matrixformed by deleting (in mind only) the row used in step 2 and all rows above this row.
Step 4: Repeat step 2 with the entire matrix until the entire matrix get transformed in reduced row Echelon form.
Calculations:
The given system of equations can be written as:
The coefficient matrix and the augmented matrix for the given system of equations are
Now applying row operations:
The solution of system of equations is
Conclusion: The solution of system of equations by Gauss-Jordan elimination method is
d.
To solve: The system of equations using inverse of the coefficient matrix.
Answer to Problem 1PRE
The solution of the system of equations using inverse of coefficient matrix is
Explanation of Solution
Given:
The system of equations in part (a)
Method/ Formula used:
The system of equations can be written as
Calculations:
The given system of equations can be written as:
The inverse of A using formula is
Therefore, the solution of the system of equations is
The solution of system of equations is
Conclusion: The solution of system of equations by inverse of coefficient matrix method is
e.
To solve: The system of equations using Cramer’s rule.
Answer to Problem 1PRE
The solution of the system of equations using Cramer’s rule is
Explanation of Solution
Given:
The system of equations in part (a)
Method/ Formula used:
For two variable system of equations
Calculations:
The given system of equations can be written as:
For the system of equations, the determinant of coefficient matrix
Therefore, values of x and y are
The solution of system of equations is
Conclusion: The solution of the system of equations usingCramer’s is
Want to see more full solutions like this?
Chapter 10 Solutions
ALEKS ACCESS CODE 52 WEEK
- Answersarrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardI need diagram with solutionsarrow_forward
- T. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning