For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
Solution Summary: The author explains the nature of the curve y2-8y-8x+40=0, which represents a parabola.
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
1. Newton's Law of Gravitation (an example of an inverse square law) states that the magnitude
of the gravitational force between two objects with masses m and M is
|F|
mMG
|r|2
where r is the distance between the objects, and G is the gravitational constant. Assume that the
object with mass M is located at the origin in R³. Then, the gravitational force field acting on
the object at the point r = (x, y, z) is given by
F(x, y, z) =
mMG
r3
r.
mMG
mMG
Show that the scalar vector field f(x, y, z) =
=
is a potential function for
r
√√x² + y² .
Fi.e. show that F = Vf.
Remark: f is the negative of the physical potential energy, because F = -V(-ƒ).
2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.