Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10P
(a)
To determine
The thickness of the rock to compensate for the slope of the ground.
(b)
To determine
The concept that use to make easier to explain the solution to part (a).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A straight ladder is leaning against the wall of a house. The ladder has rails 4.90 m long, joined by rungs 0.410 m long. Its bottom end is on solid but sloping ground so that the top of the ladder is 0.690 m to the left of where it should be, and the ladder is unsafe to climb. You want to put a flat rock under one foot of the ladder to compensate for the slope of the ground. (a) What should be the thickness of the rock? (b) Does using ideas from this chapter make it easier to explain the solution to part (a)? Explain your answer.
As part of an engineering design, a load of mass M2=10 kg is to be suspended from
the far end of a beam of mass M1=8kg. A horizontal cable supporting the beam
attaches to the beam at a distance of d=2m from a joint/hinge. The length of the
beam is L=7m. The beam makes an angle of 55 degrees with the horizontal.
M,
2
a. What magnitude of force should the cable be able to withstand in this setup?
b. What magnitude of force should the joint/hinge be able to withstand in this setup?
. A carpenter and his assistant are to carry a uniform wooden beam, which is 6 m long
and weighs 100 kg, on their shoulders. Both men are of the same height so that the
beam is carried horizontally. However, the carpenter is the stronger of the two and
wishes to bear 50% more of the weight of the beam than his assistant. If one end of
the beam is placed on the assistant's shoulder, how far from the other end of the beam
should the carpenter put his shoulder?
[71
Chapter 10 Solutions
Physics for Scientists and Engineers
Ch. 10.1 - A rigid object rotates in a counterclockwise sense...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Rebecca are riding on a merry-go-round....Ch. 10.4 - If you are trying to loosen a stubborn screw from...Ch. 10.5 - You turn off your electric drill and find that the...Ch. 10.7 - A section of hollow pipe and a solid cylinder have...Ch. 10.9 - A ball rolls without slipping down incline A,...Ch. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...
Ch. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - Review. Consider a tall building located on the...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Prob. 10PCh. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - In a manufacturing process, a large, cylindrical...Ch. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - A disk having moment of inertia 100 kg m2 is free...Ch. 10 - Your grandmother enjoys creating pottery as a...Ch. 10 - At a local mine, a cave-in has trapped a number of...Ch. 10 - You have just bought a new bicycle. On your first...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - Why is the following situation impossible? In a...Ch. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - You have been hired as an expert witness in the...Ch. 10 - A shaft is turning at 65.0 rad/s at time t = 0....Ch. 10 - A shaft is turning at angular speed at time t =...Ch. 10 - An elevator system in a tall building consists of...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - Review. A clown balances a small spherical grape...Ch. 10 - As a gasoline engine operates, a flywheel turning...Ch. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - To find the total angular displacement during the...Ch. 10 - A uniform, hollow, cylindrical spool has inside...Ch. 10 - A cord is wrapped around a pulley that is shaped...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardA uniform wire (Y = 2.0 1011 N/m2) is subjected to a longitudinal tensile stress of 4.0 107 N/m2. What is the fractional change in the length of the wire?arrow_forward
- In Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forwardResting horizontally, a wheelbarrow has a total mass of 76 kg, with its center of gravity 15 cm from the wheel axle.A person grips the handles 1.4 m from the wheel axle. What total vertical force must the person exert to lift it?arrow_forwardA beam is attached to a vertical wall with a hinge. The mass of the beam is 1000 kg, and it is 4 m long. A steel support wire is tied from the end of the beam to the wall, making an angle of 30° with the beam. (a) By summing the torque about the axis passing through the hinge, calculate the tension in the support wire. Assume the beam is uniform so that the weight acts at its exact center. (b) What is the minimum cross-sectional area of the steel wire so that it is not permanently stretched? The yield strength (elastic limit) for steel is 290 × 106N/m2, and the ultimate breaking strength is 400×106N/m2.arrow_forward
- a uniform beam with a weight of 60 N and a length of 3.2 m is hinged at its lower end, and a horizontal force of magnitude 50 N acts at its upper end.The beam is held vertical by a cable that makes angle u = 25° with the ground and is attached to the beam at height h = 2.0 m. What are (a) the tension in the cable and (b) the force on the beam from the hinge in unit-vector notation?arrow_forwardA 5.0m long uniform ladder leans against a smooth wall and its base rests on a rough floor. The ladder has a mass of 18.0 kg and its base is a distance of 2.3m from the wall. If the ladder is to remain in place, what frictional force must be exerted by the floor on the ladder?arrow_forwardA uniform pencil is held horizontal with a thumb at the end and index finger under it 3 cm from the end. If the pencil has a mass of 20g and is 15 m long, what is the force on the index finger due to the pencil?arrow_forward
- A uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 8.5 kg, a length of 1.8 m, is at an angle of 21° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. FH %3D Fv = %3Darrow_forwardA ladder of weight 600 N and length 10.0 m is placed against a smooth vertical wall. A person weighing 1000 N stands on the ladder 6.0 m from the bottom as measured along the ladder. At a height of 7.0 m the ladder is on the point of slipping. Find: (a) Calculate the force exerted by the wall. (b) Calculate the normal force exerted by the floor on the ladder. (c) The force of friction between the floor and ladder. (d) Calculate the coefficient of static friction if the ladder is on the point of slipping when the person is 8.0 m up the ladder.arrow_forwardA parking garage is designed for two levels of cars. To make more money, the owner decides to double the size of the gar- age in each dimension (length, width, and number of levels). For the support columns to hold up four floors instead of two, how should he change the columns’ diameter? (a) Double the area of the columns by increasing their diameter by a factor of 2. (b) Double the area of the columns by increasing their diameter by a factor of V2. (c) Quadruple the area of the columns by increasing their diameter by a factor of 2. (d) Increase the area of the columns by a factor of 8 by increasing their diameter by a factor of 2V2. (e) He doesn't need to increase the diameter of the columns.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning