A cord is wrapped around a pulley that is shaped like a disk of mass mand radius r. The cord's free end is connected to a block of mass M. The block starts from rest and then slides down an incline that makes an angle 0 with the horizontal as shown in Figure P10.48. The coefficient of kinetic friction between block and incline is u. (a) Use energy methods to show that the block's speed as a function of position d down the incline is 4Mgd(sin 0 – µ cos 0) т+ 2M (b) Find the magnitude of the acceleration of the block in terms of µ, m, M, g, and 0. m M Figure P10.48
A cord is wrapped around a pulley that is shaped like a disk of mass mand radius r. The cord's free end is connected to a block of mass M. The block starts from rest and then slides down an incline that makes an angle 0 with the horizontal as shown in Figure P10.48. The coefficient of kinetic friction between block and incline is u. (a) Use energy methods to show that the block's speed as a function of position d down the incline is 4Mgd(sin 0 – µ cos 0) т+ 2M (b) Find the magnitude of the acceleration of the block in terms of µ, m, M, g, and 0. m M Figure P10.48
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![A cord is wrapped around a pulley that is shaped like a disk
of mass mand radius r. The cord's free end is connected to a
block of mass M. The block starts from rest and then slides
down an incline that makes an angle 0 with the horizontal
as shown in Figure P10.48. The coefficient of kinetic friction
between block and incline is u. (a) Use energy methods to
show that the block's speed as a function of position d down
the incline is
4Mgd(sin 0 – µ cos 0)
т+ 2M
(b) Find the magnitude of the acceleration of the block in
terms of µ, m, M, g, and 0.
m
M
Figure P10.48](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18b95594-0d47-4103-82b7-98ccf38c9faf%2Fbb8905a6-0d9b-4a82-b0bb-c31f59c292ee%2Fvrttobc.png&w=3840&q=75)
Transcribed Image Text:A cord is wrapped around a pulley that is shaped like a disk
of mass mand radius r. The cord's free end is connected to a
block of mass M. The block starts from rest and then slides
down an incline that makes an angle 0 with the horizontal
as shown in Figure P10.48. The coefficient of kinetic friction
between block and incline is u. (a) Use energy methods to
show that the block's speed as a function of position d down
the incline is
4Mgd(sin 0 – µ cos 0)
т+ 2M
(b) Find the magnitude of the acceleration of the block in
terms of µ, m, M, g, and 0.
m
M
Figure P10.48
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON