The strongest one between intermolecular forces and intramolecular forces has to be identified and the same has to be justified. Concept introduction: Every atom strives to attain lowest possible energy in their shells. This is the driving force of atoms to combine with other atoms in so called “ chemical reactions ”. At the lowest possible energy levels, atoms and molecules attain utmost stability. Reaching the lowest energy is not only the essential criterion for the molecules of matter to be stable. There are many other factors that have role in determining the stability of a substance. “Intermolecular forces” and “Intramolecular forces” are two such factors that have significant impact on the stability of matter. In simple words, Intermolecular forces are termed as the forces acting “between molecules” that is components of a substance. Intramolecular forces are the forces that operate “within a molecule”. The prefix “inter” mean “among” and “intra” mean “within”. Atoms do combine to form a molecule. Within a molecule, the atoms are held together by intramolecular forces. Many molecules are formed by such instance. Matter is composed of many such innumerable molecules which are held together by intermolecular forces. There are many types of intermolecular forces and intramolecular forces which can be summarized as follows – Figure 1 Figure 2 Intermolecular forces are Van der Waals forces. They are weaker than intramolecular forces and have three types - London dispersion forces, dipole-dipole forces and hydrogen bonding. Hydrogen bonding is the strongest one among all the intermolecular forces.
The strongest one between intermolecular forces and intramolecular forces has to be identified and the same has to be justified. Concept introduction: Every atom strives to attain lowest possible energy in their shells. This is the driving force of atoms to combine with other atoms in so called “ chemical reactions ”. At the lowest possible energy levels, atoms and molecules attain utmost stability. Reaching the lowest energy is not only the essential criterion for the molecules of matter to be stable. There are many other factors that have role in determining the stability of a substance. “Intermolecular forces” and “Intramolecular forces” are two such factors that have significant impact on the stability of matter. In simple words, Intermolecular forces are termed as the forces acting “between molecules” that is components of a substance. Intramolecular forces are the forces that operate “within a molecule”. The prefix “inter” mean “among” and “intra” mean “within”. Atoms do combine to form a molecule. Within a molecule, the atoms are held together by intramolecular forces. Many molecules are formed by such instance. Matter is composed of many such innumerable molecules which are held together by intermolecular forces. There are many types of intermolecular forces and intramolecular forces which can be summarized as follows – Figure 1 Figure 2 Intermolecular forces are Van der Waals forces. They are weaker than intramolecular forces and have three types - London dispersion forces, dipole-dipole forces and hydrogen bonding. Hydrogen bonding is the strongest one among all the intermolecular forces.
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
Chapter 10, Problem 10ALQ
Interpretation Introduction
Interpretation:
The strongest one between intermolecular forces and intramolecular forces has to be identified and the same has to be justified.
Concept introduction:
Every atom strives to attain lowest possible energy in their shells. This is the driving force of atoms to combine with other atoms in so called “chemical reactions”. At the lowest possible energy levels, atoms and molecules attain utmost stability.
Reaching the lowest energy is not only the essential criterion for the molecules of matter to be stable. There are many other factors that have role in determining the stability of a substance. “Intermolecular forces” and “Intramolecular forces” are two such factors that have significant impact on the stability of matter.
In simple words, Intermolecular forces are termed as the forces acting “between molecules” that is components of a substance. Intramolecular forces are the forces that operate “within a molecule”. The prefix “inter” mean “among” and “intra” mean “within”.
Atoms do combine to form a molecule. Within a molecule, the atoms are held together by intramolecular forces. Many molecules are formed by such instance. Matter is composed of many such innumerable molecules which are held together by intermolecular forces. There are many types of intermolecular forces and intramolecular forces which can be summarized as follows –
Figure 1
Figure 2
Intermolecular forces are Van der Waals forces. They are weaker than intramolecular forces and have three types - London dispersion forces, dipole-dipole forces and hydrogen bonding. Hydrogen bonding is the strongest one among all the intermolecular forces.
For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check
the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions
- just focus on the first stable product you expect to form in solution.
?
NH2
MgBr
Will the first product that forms in this reaction
create a new CC bond?
○ Yes
○ No
MgBr
?
Will the first product that forms in this reaction
create a new CC bond?
O Yes
O No
Click and drag to start drawing a
structure.
:☐
G
x
c
olo
Ar
HE
Predicting
As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule
with a new C - C bond as its major product:
H₂N
O
H
1.
?
2. H3O+
If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more
than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for
example to distinguish between major products with different stereochemistry.
0
If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank.
فا
Explanation
Check
Click and drag to start drawing a
structure.
Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers.
OH
OH
OH
OH
OH
OH